COMPUTATIONAL SIMULATIONS OF CARBON MATERIALS

Erin Yancey Nick Wang

Mentors: Shiquan Su Jacek Jakowski

Purpose

Nanotechnology: carbon materials promising building blocks.

Figure 1. Members of the fullerene family: C_{60} and a carbon nanotube.

Strock, Michael. Members of the fullerene family. Graphic. 6 Feb. 2006. Fullerene. Wikipedia Commons. *Wikipedia, the Free Encyclopedia*. 2 Aug. 2013.

Purpose

- Applications:
 - Optical and electronic devices
 - Sensors
 - Nano-scale machines

Figure 2. View of a photonic circuit with molecular building blocks.

Lettow, Robert. Optical Transistor. Illustration. 2 July 2009. Optical transistor breaks size record. *Nanotechweb.org.* 2 August 2013.

Methods

- Dipole polarizability of C_{60} fullerene comparing to C_{70} fullerene
- Effect of electronic excitation & structural dynamics on polarizability

E.E.B Campbell and F. Rohmund, Rep. Prog. Phys. **63**, 1061 (2000).

Figure 3. Absolute fusion cross section as a function of the inverse collision energy for the three collision systems indicated in the figure.

Figure 4. Schematic outcomes of collision between fullerene like structures: (a) nonreactive elastic scattering,
(b) dimerization/polymerization, (c) collision-induced internal reorganization/inelastic scattering, (d) partial coalescence,
(e) full coalescence, (f) fragmentation.

J. Jakowski, S. Irle, and K. Morokuma, Phys. Rev. B 82, 125443 (2010).

Procedure

• DFTB+:

- Approximate density functional theory
- Quantum mechanical modeling method approach
- Employs slater type orbitals
- Minimal basis set
- Only treats valence electrons

Fermi energy: Band energy:	-0.1830372076 -107.5973090636	H -4.9807 eV H -2927.8717 eV
TS:	0.0055345700	H 0.1506 eV
Band free energy (E-TS):	-107.6028436336	H -2928.0224 eV
Extrapolated E(OK):	-107.6000763486	H -2927.9470 eV
Input/Output electrons (q):	240.0000000 2	40.0000000
Energy H0:	-107.2052588543	H -2917.2035 eV
Energy SCC:	0.0019067085	H 0.0519 eV
Total Electronic energy:	-107.2033521458	H -2917.1516 eV
Repulsive energy:	4.4549430585	H 121.2252 eV
Total energy:	-102.7484090873	H -2795.9265 eV
Total Mermin free energy:	-102.7539436573	H -2796.0771 eV
SCC converged		
Dipole moment : 0.27195375	-0.06805678	0.15923616 au
Dipole moment : 0.69123754	-0.17298309	0.40473797 Debye

Figure 5. Example DFTB+ "detailed.out" file.

Procedures

- Programs: DFTB+, VMD
- Machines: Kraken
- Codes: Bash scripting

- PBS script, queuing, serial scripting
- Created data structures

Figure 6. The UT supercomputer Kraken located at Oak Ridge National Laboratory.

"Kraken XT5." Photograph. n.d.. Computing Resources: Kraken. *The National Institute for Computational Sciences.* Web. 25 July 2013.

Procedures

- Molecular dynamics (MD) simulation of C₆₀ and C₇₀
- 5 ps
- Nose-Hoover thermostat
- 2000 K
- Produced 5000 geometry steps
- Used every 50th step from 1000 to 5000

Figure 7. Plot of kinetic energy versus steps at 2000 K.

- Calculated optimized polarizability
- $\mu = \alpha \overrightarrow{E}$
 - μ = dipole moment
 - α = polarizability
 - \overrightarrow{E} = electric field

Method	C ₆₀	C ₇₀	C ₇₀ /C ₆₀
Tight binding	77.00	91.60	1.19
TDDFT/SAOP	83.00	101.00	1.22
DFTB	56.00	67.90	1.21

Table 1. Experimental vs. theoretical comparison of polarizability (Å³).

Zope, Rajendra R., J. Phys. B: At. Mol. Opt. Phys. 40, (2007).

- Goal: examine how polarizability is affected when electronic temperature and electric field are manipulated
- Ran simulations on geometries:
 - Electronic temperatures: 0, 1000, 2000, 3000,10000 K
 - Point charges: 0.0, 0.1, 0.4, 0.6, 1.0 C.

Polarizabilities calculated using "awk"

for 0.0-0.1#

paste dipoleFileZ_0.0 dipoleFileZ_0.1 |awk '{b2a=0.529177249; printf("
%s %16.8f %16.8f %16.8f \n", \$1, (\$13-\$5)*b2a, (\$14-\$6)*b2a, (\$15-\$7)*b2a)}'
| awk '{Q=0.1; sc= 5000/Q; alx= \$2*sc; aly = \$3*sc; alz =\$4*sc; av+=alz;
printf("%s :: %12.6f %12.6f %12.6f %12.6f \n", \$0, alx,aly,alz,av/NR)
} ' |tail -1 > avepolar_0.0-0.1

awk '{printf("%16.8f \n", \$9)}' avepolar_0.0-0.1 > valAve

paste dipoleFileZ_0.0 dipoleFileZ_0.1 valAve |awk '{avg+=\$17; printf("\$s
\$16.8f \$16.8f \$16.8f \$16.8f \$16.8f \$16.8f \$16.8f \$16.8f \n", \$1, \$5, \$6, \$7, \$13, \$14,
\$15, avg)}' | awk '{b2a=0.529177249; printf("\$s \$16.8f \$16.8f

Figure 8. Script using "awk."

Figure 9. Isotropic polarizability versus temperature change for C_{60} and C_{70} at a charge of 0.1 C.

- Simulation in VMD of dynamic structure of C₆₀ and C₇₀ under the following conditions:
 - Charge: 0.1 C in the x direction
 - Temperature: 2000 K

Figure 10. Still shot from VMD simulation of C_{60} .

Direction

- Observe a general trend of the effect of polarizability on collision pattern
- Create a visual model of collision

Figure 11. Time dependence of kinetic and potential energy during collision MD between two C_{60} with $T_{e}=2000$ K.

J. Jakowski, S. Irle, and K. Morokuma, Phys. Rev. B 82, 125443 (2010).

Acknowledgements

 The present research was conducted under the Computational Science for Undergraduate Research Experiences (CSURE) REU project and is supported by the Joint Institute for Computational Sciences, founded by the University of Tennessee at Knoxville (UTK) and Oak Ridge National Laboratory (ORNL). The authors acknowledge ORNL for allowing access to highperformance computing resources.