
Next Generation Sequencing Technologies

Julian Pierre, Jordan Taylor, Amit Upadhyay,	 Bhanu Rekepalli

Abstract:
The process of generating genome sequence data is constantly getting faster, cheaper,

and more accurate. Unfortunately, assembling the data into a finished genome sequence is still
a challenge despite our technological advances. While we have a variety of assembly tools,
many of these tools differ in performance and final composition of an assembled sequence.
Sequencing results in bioinformatics have shown the need for a benchmark in sequence
assemblers.

Introduction:
One fundamental principle of biology is that within each cell of DNA there are genes that

encode RNA which is used to produce proteins that regulate all of the biological processes
within an organism. Bioinformatics is the application of computer technology to aid in the
management of biological information, and is a field that encompasses different tools and
techniques from three separate disciplines; molecular biology, computer science, and data
analysis algorithms. Through technological advances in bioinformatics we have a better
understanding of how gene sequences code specific proteins from various types of data.

Background:

To understand the process of generating genome sequence data, there first needed to
be an understanding related to the field of bioinformatics and what genome sequences
encompasses. Being familiar with the National Center for Biotechnology Information (NCBI) [2],
Multiple Sequence Alignment (MSA) [3], and Sequence Analysis methods [4] proved helpful in
the study on gene sequencing. However, a web journal titled “What is bioinformatics? An
introduction and overview” [5] provided a broad array of topics related to bioinformatics, such as
they types of formats used, Different databases, ways data gets organized, and different ideas
for the future of bioinformatics.

To prepare to work with large amounts of data, there was a need to attend training on
parallel computing. The training attended addressed some of the new features of the Beacon
Many Integrated Core (MIC) architecture, as it combines many Central processing Units (CPU)
into one chip providing better performance with faster computations. Although Beacon supports
FORTRAN, C, and C++; some things to note is that even though you can use C++ code to call
functions, you aren’t able to transfer classes, and you don’t send a function to a Message
passing Interface (MPI), but have the function go to an Open Multi Processing Interface
(OpenMPI) to run the code in parallel. This would allow the use of more than one core when
running a program, thus taking full advantage of the parallel processing performed on Beacon.

Project:

The process of generating genome sequence data is constantly getting faster, cheaper,
and more accurate thanks to the high throughput Next Generation Sequencing (NGS) machines.
Sequence assembly is the merging and ordering of shorter fragments called “reads”, sampled
from the larger sequence. Sequence assemblers generally take a file of short sequence reads
and a quality-value file as the input [6]. The quality value reflects the how accurate an
alignment is of a particular sequence. Due to the high memory requirements of high-throughput
short reads from NGS machines, sequence data is always initially formatted to a specific data
structure to reduce the total amount of memory used. To understand NGS assemblers we first
conducted an experiment on Short Sequence Alignment (SSA) Tools.

Aligners:
Methods:
 The aligners chosen for comparison were BLAST (Basic Local Alignment Search Tool)
and MUMmer (Maximal Unique Matches or MUM). To get an understanding on how aligners
worked, two FASTA [7] formatted files related to the same nucleotide were used. One file
contained the database and the other the query sequence. Before these files can be used they
needed to reformat the database to read nucleotide sequences using BLAST. BLAST achieves
its speed is by using sequences in a binary format thus avoiding the overhead of parsing
sequences stored in ASCII format. Once formatted the new output files to represent the
database had the extension .nhr, .nin, and .nsq [8], which represented the header file, the index
file, and the sequence file.
 Once the file was formatted we could run the BLAST program against the database in
relation to the sequence file. This returned a tabular output file that contained Node surface
area of DNA, the contig [9], and their respective lengths, mismatches, gaps, and other related
fields. To begin comparisons, a Python script was written to read the data and to find out how
many values were returned in this file. The programming language chosen was Python as it is
more of a script base language than an actual programming language. This would make it
easier for a non-programmer to understand or modify to achieve the same or different results.
When the file was parsed, the results showed that the particular nucleotide sequence had
552,305 reads, and produced 160,749 contigs. To see how accurate the sequence was aligned,
the script was modified the script to show that the reads returned a value of 198,259 hits [10],
while the contigs returned 123,070 hits.

The process for MUMmer was similar as it used the same dataset used in the BLAST
testing. However, instead of using ASCII format like BLAST, MUMmer uses a suffix-tree [11]
architecture which makes it an important data structure for large-scale genome analysis. The
use of suffix-trees provides a faster alignment time than BLAST while the memory usage is
decreased. To read the MUMmer output file, the program was modified, which returned the
results that were 121,829 contig that were hit compared to blast 123,070. As these values on
their own don’t signify anything, another test was initiated to compare how accurately they
aligned their contig values. To accomplish this we had to compare the contig values based on
its coverage. This was accomplished by first getting the lengths of each node related to a
specific contig and get their lengths while taking only the difference between overlapping
lengths.

Results:

The results in Fig. 1 shows the number of contigs based on that percent of coverage.

Fig. 1:

Shows frequency of contig coverage for both BLAST and MUMmer.

What this graphs shows is that the contig coverage using MUMmer is greater than that
covered by BLAST on the higher percentages. As a result, even though MUMmer produced
fewer contigs than BLAST, it is a more accurate Alignment tool than BLAST.

Assemblers:
Research:

For the past 29 years Sanger Sequencing [12] produced longer reads with a low error
rate, but it was relatively more expensive to produce the reads. Sanger sequencing contigs,
overlapping segments of DNA, were initially built using string graphs. However, due to the rapid
rate of increase in competing technologies, there has been a change in the field has moved
towards shorter reads at a much lower cost for a given volume of reads. Genome assemblers

generally take a file of short sequence reads and a file of quality-value as the input. Tools such
as PHRED reflect the actual error rates in the aligned sequences in data providing a quality
value [13]. The higher this quality value, the better the alignment. Because the quality-value file
for the high throughput short reads is usually memory-intensive, first generation tools such as
PHRAP (PHRagment Assembly Program), Celera, and ARCHNE, were used for numerous high
quality assemblies. These tools used an overlap layout consensus approach (Zerbino and
Birney 2008) and didn’t follow the paradigm (Kunin et al. 2008) [14]. This was obscuring the
intra-strain variation results found and assumes that deviations were errors than real genetic
variations.
Algorithm types:

Currently there are two main formats styles: string-based implemented with the Greedy
extension algorithm, called “Greedy Algorithm” [15], which are mainly reported for the assembly
of small genomes [16-18],and graph-based model formatting\which are designed at handling
complex genomes [19-21]. The near-identity of sequences of the Greedy Algorithm is
characterized by a small positive number instead of a large one. In other words an alignment is
assessed by counting the number of its differences (i.e. the columns that do not align identical
nucleotides). The distance between strings and is then defined as the minimum number of
differences in any alignment of those strings. Greedy alignment algorithms work directly with a
measurement which is the difference between two sequences, rather than their similarity.

While the graph-based approaches are generally superior in terms of assembly quality,
the computer resources required for building and storing a large graph is very high. One primary
area of concern is how to process repetitive fragments from complicated genome through the
assembly of next-generation short reads. Due to the length of some sequences, Paired-end
(PE) sequencing can compensate for the read lengths. PE sequencing reads both the forward
and reverse template strands of each cluster during one Paired end read, and both reads
contain long range positional information allowing for highly precise alignment of reads. One
possible solution to this problem can be to use longer reads, but currently that isn’t possible with
our current technology [22].

Assemblers, such as SSAKE [23], SOAPdenovo [20], AbySS [21], and Velvet [24]
exploit PE sequencing information to reduce gaps, an insertion or deletion within the input
sequence alignment as missing data [25], from assembled contigs. For string-based
assemblers the time and memory cost is proportionate to the dataset size. SSAKE, a string
based assembler, runs in less time than other peer assemblers, but the RAM (or memory)
usage increases dramatically as the dataset size increases. In comparison graph based Short-
read Sequencing tools such as Velvet, SOAPdenovo, ALLPATHS [26], and ABySS implement
assembly task with fairly little computational power, and are more suited for large datasets
which use the De Bruijn graph method [27]. In this method a certain proportion of base errors
are incorporated into contigs during construction of the graph with k-mers(DNA ‘words’ of
length k) generated from the input, thus creating a series of overlapping reads and represents a
candidate Hamiltonian cycle assembly reading each series of k-mers only once.

NGS Related Issues:

Because adjacent reads usually overlap, data loss is a primary concern when using
Short-read Sequencing tools. When the data is read by the assembler some base pairs are lost
either by being discarded as mistakes or repeat sequences, or by being joined in the wrong
place or orientation [28]. In fact it is now also recognized that short reads have made the
assembly problem significantly harder due to the complexity involved in resolving long repeats.
To solve this problem, the assembler tools used are based on the assumptions that if two reads
share a sufficiently long subsequence then they belong to the same location in the genome.

Currently, there are more than 20 different assemblers, and these assemblers have
been designed to mitigate the complexity of assembling Next Generation Sequence (NGS)
reads. The issue with that many different assemblers is that there is no single computational
method that is accepted as the best way to find similarities between genomes of different
species. This raised the concern for a computational benchmark for assemblers. To achieve
this benchmark, competitions such as the Assemblathon and Assemblathon 2 were conducted
to compare methods of assembling full genomes from the short segments of genetic information
produced by genetic sequencing technologies. Unfortunately the results from both these
competitions showed that large differences exist between the assemblies, and that there are
inconsistencies when using the same assembler (i.e. two groups could run the same program
and get different results).

Conclusion:

In summary, MUMmer is a more accurate alignment tool than BLAST and there are
numerous sequencing problems caused by the new sequencing methods of Next Generation
Sequencing. These sequencing issues may be fixed by taking longer sequences instead of a
large amount of short sequences. Due to the different parameters related to different
assemblers, you should not depend on a single metric, and choose assemblers that excel in a
specific area of interest.

 References:
1.	 Bruce	 Alberts,	 Alexander	 Johnson,	 Julian	 Lewis,	 Martin	 Raff,	 Keith	 Roberts,	 and	 Peter	 Walter	 Molecular	
Biology	 of	 the	 Cell,	 2007,	 ISBN	 978-‐0-‐8153-‐4105-‐5
2.	 	 NCBI	 -‐	 	 develops	 new	 information	 technologies	 to	 aid	 in	 the	 understanding	 of	 fundamental	 molecular	 and	
genetic	 process	 that	 control	 health	 and	 disease

3.	 	 MSA	 -‐the	 Alignment	 of	 three	 of	 more	 biological	 sequences	 usually	 DNA,	 proteins,	 or	 RNA

peptide	 sequence	 -‐	 the	 order	 of	 which	 amino	 acids	 connect	 to	 peptide	 bonds

4.	 	 N.M.Luscombe,	 D.	 Greenbaum,	 and	 M.	 Gerstein(2001)	 Yearbook	 of	 Medical	 Informatics	 What	 is	
bioinformatics	 An	 introduction	 and	 overview

5.	 Sensen,	 C.	 W.	 "Sequenceing	 Terminology."	 Essentials	 of	 Genomics	 and	 Bioinformatics.	 Weinheim:	 Wiley-‐
VCH,	 2002.	 N.	 pag.	 Print

6.	 FASTA	 -‐	 is	 a	 text-‐based	 format	 for	 representing	 either	 nucleotide	 sequences	 or	 peptide	 sequences,	 in	
which	 nucleotides	 or	 amino	 acids	 are	 represented	 using	 single-‐letter	 codes	 zhanglab.ccmb.med.umich.edu/FASTA/

7.	 Farrar,	 Michael	 S.	 "NCBI	 BLAST	 Database	 Format."	 HHMI,	 Janelia	 Farm	 Research	 Campus,	 Mar.-‐Apr.	 2010.	 	 	
Web.

8.	 Contig	 -‐	 is	 a	 set	 of	 overlapping	 DNA	 segments	 that	 together	 represent	 a	 region	 of	 DNA.	 	 	 	 	 	

9.	 Staden,R	 (1980)	 A	 new	 computer	 method	 for	 the	 storage	 and	 manipulation	 of	 DNA	 gel	 reading	 data",	
Nucleic	 Acids	 Res.	 8,	 3673-‐3694

10.	 	 	 	 	 	 	 	 	 	 	 	 	 hits	 -‐	 has	 an	 area	 of	 coverage

11.	 	 	 	 	 	 	 	 	 	 	 	 	 Suffix-‐tree	 -‐	 is	 a	 data	 structure	 for	 representing	 all	 the	 substrings	 of	 a	 string,	 whether	 that	 string	 is	 a	 DNA	
sequence,	 a	 protein	 sequence,	 or	 plain	 text.

Kurtz,	 Stefan,	 Adam	 Phillippy,	 Arthur	 L.	 Delcher,	 and	 And	 Others.	 "Versatile	 and	 Open	 Software	 for	 Comparing	
Large	 Genomes."	 Genome	 Biology.	 N.p.,	 30	 Jan.	 2004.	 Web.

12.	 	 	 	 	 	 	 	 	 	 	 	 	 Earl	 D,	 Bradnam	 K,	 John	 JS,	 Darling	 A,	 Lin	 D,	 et	 al.	 (2011)	 Assemblathon	 1:	 A	 competitive	 assessment	 of	 de	
novo	 short	 read	 assembly	 methods.Genome	 Res	 21:	 2224–2241.

13.	 	 	 	 	 	 	 	 	 	 	 	 	 Sensen,	 C.	 W.	 "Sequenceing	 Terminology."	 Essentials	 of	 Genomics	 and	 Bioinformatics.	 Weinheim:	 Wiley-‐
VCH,	 2002.	 N.	 pag.	 Print

14.	 	 	 	 	 	 	 	 	 	 	 	 	 Timothy	 Graham	 Amos	 “Metagenomics”	 	 From	 Organism	 Diversity	 to	 Micro-‐heterogeneity:	 Confident	
Assessment	 of	 Fine-‐scale	 Variation	 within	 Metagenomic	 Data:	 Thesis	 2011

15.	 	 	 	 	 	 	 	 	 	 	 	 	 Zheng	 Z.	 Scott	 S.	 Lukas	 W.	 and	 Webb	 M.	 (2000)“A	 Greedy	 Algorithm	 for	 Aligning	 DNA	 Sequences”	
JOURNAL	 OF	 COMPUTATIONAL	 BIOLOGY	 Volume	 7,	 Numbers	 1/2,	 2000	 Mary	 Ann	 Liebert,	 Inc.	 Pp.	 203–214

16.	 	 	 	 	 	 	 	 	 	 	 	 	 Dohm	 JC,	 Lottaz	 C,	 Borodina	 T,	 Himmelbauer	 H	 (2007)	 SHARCGS,	 a	 fast	 and	 highly	 accurate	 short-‐read	
assembly	 algorithm	 for	 de	 novo	 genomic	 sequencing.	 Genome	 Res	 17:	 1697–1706.	 doi:	 10.1101/gr.6435207.

17.	 	 	 	 	 	 	 	 	 	 	 	 	 Bryant	 DW	 Jr,	 Wong	 WK,	 Mockler	 TC	 (2009)	 QSRA:	 a	 quality-‐value	 guided	 de	 novo	 short	 read	 assembler.	
BMC	 Bioinformatics	 10:	 69.	 doi:	 10.1186/1471-‐2105-‐10-‐69.

18.	 	 	 	 	 	 	 	 	 	 	 	 	 Jeck	 WR,	 Reinhardt	 JA,	 Baltrus	 DA,	 Hickenbotham	 MT,	 Magrini	 V,	 et	 al.	 (2007)	 Extending	 assembly	 of	 short	
DNA	 sequences	 to	 handle	 error.	 Bioinformatics	 23:	 2942–2944.	 doi:	 10.1093/bioinformatics/btm451.

19.	 	 	 	 	 	 	 	 	 	 	 	 	 Li	 R,	 Fan	 W,	 Tian	 G,	 Zhu	 H,	 He	 L,	 et	 al.	 (2010)	 The	 sequence	 and	 de	 novo	 assembly	 of	 the	 giant	 panda	
genome.	 Nature	 463:	 311–317.

20.	 	 	 	 	 	 	 	 	 	 	 	 	 Li	 R,	 Zhu	 H,	 Ruan	 J,	 Qian	 W,	 Fang	 X,	 et	 al.	 (2010)	 De	 novo	 assembly	 of	 human	 genomes	 with	 massively	
parallel	 short	 read	 sequencing.	 Genome	 Res	 20:	 265–272.	 doi:	 10.1101/gr.097261.109.

21.	 	 	 	 	 	 	 	 	 	 	 	 	 Simpson	 JT,	 Wong	 K,	 Jackman	 SD,	 Schein	 JE,	 Jones	 SJ,	 et	 al.	 (2009)	 ABySS:	 a	 parallel	 assembler	 for	 short	
read	 sequence	 data.	 Genome	 Res	 19:	 1117–1123.	 doi:	 10.1101/gr.089532.108.

22.	 	 	 	 	 	 	 	 	 	 	 	 	 Zhang	 W,	 Chen	 J,	 Yang	 Y,	 Tang	 Y,	 Shang	 J,	 et	 al.	 (2011)	 A	 Practical	 Comparison	 of	 De	 Novo	 Genome	
Assembly	 Software	 Tools	 for	 Next-‐Generation	 Sequencing	 Technologies.	 PLoS	 ONE	 6(3):	 e17915.	
doi:10.1371/journal.pone.0017915

23.	 	 	 	 	 	 	 	 	 	 	 	 	 Warren	 RL,	 Sutton	 GG,	 Jones	 SJ,	 Holt	 RA	 (2007)	 Assembling	 millions	 of	 short	 DNA	 sequences	 using	 SSAKE.	
Bioinformatics	 23:	 500–501.	 doi:	 10.1093/bioinformatics/btl629.

24.	 	 	 	 	 	 	 	 	 	 	 	 	 Zerbino	 DR,	 Birney	 E	 (2008)	 Velvet:	 algorithms	 for	 de	 novo	 short	 read	 assembly	 using	 de	 Bruijn	 graphs.	
Genome	 Res	 18:	 821–829.	 doi:	 10.1101/gr.074492.107.

25.	 	 	 	 	 	 	 	 	 	 	 	 	 Steve.E,	 Tandy	 W.	 (2011)	 Phylogenetic	 analyses	 of	 alignments	 with	 gaps.	 Tech	 Report	 807:	
statistics.berkeley.edu

26.	 	 	 	 	 	 	 	 	 	 	 	 	 Butler,	 J.	 et	 al.	 Genome	 Res.	 18,	 810–820	 (2008)

27.	 	 	 	 	 	 	 	 	 	 	 	 	 Phillip	 C,	 Pavel	 P,	 and	 Glenn	 T	 (2011)	 Nature	 Biotechnology	 29,	 987–991	 doi:10.1038/nbt.2023	 Published	
online	 08	 November	 2011

28.	 	 	 	 	 	 	 	 	 	 	 	 	 Monya	 Baker	 (2012)	 Nature	 Methods	 “De	 novo	 denome	 assembly:	 what	 every	 biologist	 should	 know”	 doi:	
10.1038/nmeth.1935

