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Abstract: 
The process of generating genome sequence data is constantly getting faster, cheaper, 

and more accurate.  Unfortunately, assembling the data into a finished genome sequence is still 
a challenge despite our technological advances.  While we have a variety of assembly tools, 
many of these tools differ in performance and final composition of an assembled sequence.  
Sequencing results in bioinformatics have shown the need for a benchmark in sequence 
assemblers. 
 

Introduction: 
One fundamental principle of biology is that within each cell of DNA there are genes that 

encode RNA which is used to produce proteins that regulate all of the biological processes 
within an organism.  Bioinformatics is the application of computer technology to aid in the 
management of biological information, and is a field that encompasses different tools and 
techniques from three separate disciplines; molecular biology, computer science, and data 
analysis algorithms.  Through technological advances in bioinformatics we have a better 
understanding of how gene sequences code specific proteins from various types of data.     

Background: 

To understand the process of generating genome sequence data, there first needed to 
be an understanding related to the field of bioinformatics and what genome sequences 
encompasses.  Being familiar with the National Center for Biotechnology Information (NCBI) [2], 
Multiple Sequence Alignment (MSA) [3], and Sequence Analysis methods [4] proved helpful in 
the study on gene sequencing. However, a web journal titled “What is bioinformatics? An 
introduction and overview” [5] provided a broad array of topics related to bioinformatics, such as 
they types of formats used, Different databases, ways data gets organized, and different ideas 
for the future of bioinformatics.   

To prepare to work with large amounts of data, there was a need to attend training on 
parallel computing.  The training attended addressed some of the new features of the Beacon 
Many Integrated Core (MIC) architecture, as it combines many Central processing Units (CPU) 
into one chip providing better performance with faster computations. Although Beacon supports 
FORTRAN, C, and C++; some things to note is that even though you can use C++ code to call 
functions, you aren’t able to transfer classes, and you  don’t send a function to a Message 
passing Interface (MPI), but have  the function go to an Open Multi Processing Interface 
(OpenMPI) to run the code in parallel.  This would allow the use of more than one core when 
running a program, thus taking full advantage of the parallel processing performed on Beacon. 

  

Project: 
  



The process of generating genome sequence data is constantly getting faster, cheaper, 
and more accurate thanks to the high throughput Next Generation Sequencing (NGS) machines. 
Sequence assembly is the merging and ordering of shorter fragments called “reads”, sampled 
from the larger sequence.  Sequence assemblers generally take a file of short sequence reads 
and a quality-value file as the input [6].  The quality value reflects the how accurate an 
alignment is of a particular sequence. Due to the high memory requirements of high-throughput 
short reads from NGS machines, sequence data is always initially formatted to a specific data 
structure to reduce the total amount of memory used. To understand NGS assemblers we first 
conducted an experiment on Short Sequence Alignment (SSA) Tools. 
 
 

Aligners: 
Methods: 
         The aligners chosen for comparison were BLAST (Basic Local Alignment Search Tool) 
and MUMmer (Maximal Unique Matches or MUM).  To get an understanding on how aligners 
worked, two FASTA [7] formatted files related to the same nucleotide were used.  One file 
contained the database and the other the query sequence.  Before these files can be used they 
needed to reformat the database to read nucleotide sequences using BLAST.  BLAST achieves 
its speed is by using sequences in a binary format thus avoiding the overhead of parsing 
sequences stored in ASCII format. Once formatted the new output files to represent the 
database had the extension .nhr, .nin, and .nsq [8], which represented the header file, the index 
file, and the sequence file. 
         Once the file was formatted we could run the BLAST program against the database in 
relation to the sequence file.  This returned a tabular output file that contained Node surface 
area of DNA, the contig [9], and their respective lengths, mismatches, gaps, and other related 
fields.  To begin comparisons, a Python script was written to read the data and to find out how 
many values were returned in this file. The programming language chosen was Python as it is 
more of a script base language than an actual programming language.  This would make it 
easier for a non-programmer to understand or modify to achieve the same or different results. 
When the file was parsed, the results showed that the particular nucleotide sequence had 
552,305 reads, and produced 160,749 contigs. To see how accurate the sequence was aligned, 
the script was modified the script to show that the reads returned a value of 198,259 hits [10], 
while the contigs returned 123,070 hits. 

The process for MUMmer was similar as it used the same dataset used in the BLAST 
testing. However, instead of using ASCII format like BLAST, MUMmer uses a suffix-tree [11] 
architecture which makes it an important data structure for large-scale genome analysis. The 
use of suffix-trees provides a faster alignment time than BLAST while the memory usage is 
decreased.  To read the MUMmer output file, the program was modified, which returned the 
results that were 121,829 contig that were hit compared to blast 123,070.  As these values on 
their own don’t signify anything, another test was initiated to compare how accurately they 
aligned their contig values.   To accomplish this we had to compare the contig values based on 
its coverage.  This was accomplished by first getting the lengths of each node related to a 
specific contig and get their lengths while taking only the difference between overlapping 
lengths. 



 

 

 

 

 

Results: 

The results in Fig. 1 shows the number of contigs based on that percent of coverage.   

 
Fig. 1:

 
Shows frequency of contig coverage for both BLAST and MUMmer. 
 

What this graphs shows is that the contig coverage using MUMmer is greater than that 
covered by BLAST on the higher percentages. As a result, even though MUMmer produced 
fewer contigs than BLAST, it is a more accurate Alignment tool than BLAST. 
 

Assemblers: 
Research: 

For the past 29 years Sanger Sequencing [12] produced longer reads with a low error 
rate, but it was relatively more expensive to produce the reads. Sanger sequencing contigs, 
overlapping segments of DNA, were initially built using string graphs. However, due to the rapid 
rate of increase in competing technologies, there has been a change in the field has moved 
towards shorter reads at a much lower cost for a given volume of reads.  Genome assemblers 



generally take a file of short sequence reads and a file of quality-value as the input.  Tools such 
as PHRED reflect the actual error rates in the aligned sequences in data providing a quality 
value [13]. The higher this quality value, the better the alignment.  Because the quality-value file 
for the high throughput short reads is usually memory-intensive, first generation tools such as 
PHRAP (PHRagment Assembly Program), Celera, and ARCHNE, were used for numerous high 
quality assemblies.  These tools used an overlap layout consensus approach (Zerbino and 
Birney 2008) and didn’t follow the paradigm (Kunin et al. 2008) [14]. This was obscuring the 
intra-strain variation results found and assumes that deviations were errors than real genetic 
variations. 
Algorithm types: 

Currently there are two main formats styles: string-based implemented with the Greedy 
extension algorithm, called “Greedy Algorithm” [15], which are mainly reported for the assembly 
of small genomes [16-18],and graph-based model formatting\which are designed at handling 
complex genomes [19-21].   The near-identity of sequences of the Greedy Algorithm is 
characterized by a small positive number instead of a large one.  In other words an alignment is 
assessed by counting the number of its differences (i.e. the columns that do not align identical 
nucleotides). The distance between strings and is then defined as the minimum number of 
differences in any alignment of those strings.  Greedy alignment algorithms work directly with a 
measurement which is the difference between two sequences, rather than their similarity. 

While the graph-based approaches are generally superior in terms of assembly quality, 
the computer resources required for building and storing a large graph is very high. One primary 
area of concern is how to process repetitive fragments from complicated genome through the 
assembly of next-generation short reads.  Due to the length of some sequences, Paired-end 
(PE) sequencing can compensate for the read lengths.  PE sequencing reads both the forward 
and reverse template strands of each cluster during one Paired end read, and both reads 
contain long range positional information allowing for highly precise alignment of reads.  One 
possible solution to this problem can be to use longer reads, but currently that isn’t possible with 
our current technology [22].   

Assemblers, such as SSAKE [23], SOAPdenovo [20], AbySS [21], and Velvet [24] 
exploit PE sequencing information to reduce gaps, an insertion or deletion within the input 
sequence alignment as missing data [25], from assembled contigs.  For string-based 
assemblers the time and memory cost is proportionate to the dataset size.  SSAKE, a string 
based assembler, runs in less time than other peer assemblers, but the RAM (or memory)  
usage increases dramatically as the dataset size increases.  In comparison graph based Short-
read Sequencing tools such as Velvet, SOAPdenovo, ALLPATHS [26], and ABySS implement 
assembly task with fairly little computational power, and are more suited for large datasets 
which use the De Bruijn graph method [27].  In this method a certain proportion of base errors 
are incorporated into contigs during construction of the graph with k-mers( DNA ‘words’ of 
length k) generated from the input, thus creating a series of overlapping reads and represents a 
candidate Hamiltonian cycle assembly reading each series of k-mers only once. 

  

NGS Related Issues: 



Because adjacent reads usually overlap, data loss is a primary concern when using 
Short-read Sequencing tools. When the data is read by the assembler some base pairs are lost 
either by being discarded as mistakes or repeat sequences, or by being joined in the wrong 
place or orientation [28].  In fact it is now also recognized that short reads have made the 
assembly problem significantly harder due to the complexity involved in resolving long repeats.  
To solve this problem, the assembler tools used are based on the assumptions that if two reads 
share a sufficiently long subsequence then they belong to the same location in the genome.   

Currently, there are more than 20 different assemblers, and these assemblers have 
been designed to mitigate the complexity of assembling Next Generation Sequence (NGS) 
reads. The issue with that many different assemblers is that there is no single computational 
method that is accepted as the best way to find similarities between genomes of different 
species.  This raised the concern for a computational benchmark for assemblers.  To achieve 
this benchmark, competitions such as the Assemblathon and Assemblathon 2 were conducted 
to compare methods of assembling full genomes from the short segments of genetic information 
produced by genetic sequencing technologies.  Unfortunately the results from both these 
competitions showed that large differences exist between the assemblies, and that there are 
inconsistencies when using the same assembler (i.e. two groups could run the same program 
and get different results). 

  

Conclusion: 

In summary, MUMmer is a more accurate alignment tool than BLAST and there are 
numerous sequencing problems caused by the new sequencing methods of Next Generation 
Sequencing. These sequencing issues may be fixed by taking longer sequences instead of a 
large amount of short sequences. Due to the different parameters related to different 
assemblers, you should not depend on a single metric, and choose assemblers that excel in a 
specific area of interest. 
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