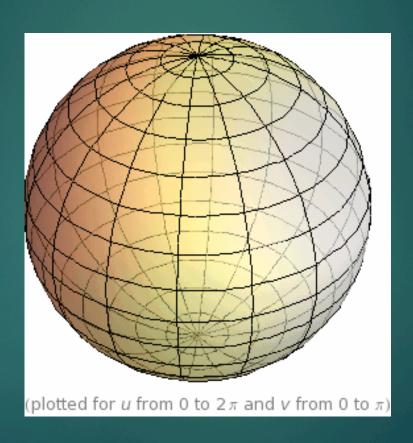
Computational
Numerical Integration
for use with Model
Boltzmann Equations

HUSTON ROGERS

Boltzmann Equation

- Finding the number of particles using momenta or velocity.
- No external forces
- Knudsen number and continuity.
- Navier-Stokes

$$dN = f(\mathbf{r}, \mathbf{p}, t) d^3 \mathbf{r} d^3 \mathbf{p}$$


$$ho \left(rac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot
abla \mathbf{v}
ight) = -
abla p +
abla \cdot \mathbf{T} + \mathbf{f},$$

Probability Distribution Function

- The function the Boltmann Equation solves for
- Can be integrated to provide moments of the Boltzmann Equation (density, velocities, temperatures)

- ∭fdV=n
- ∭VifdV=nUi
- \frac{\text{S}C^2*fdV=(3n/2)*T}
- ∭C^2*Vi*fdV=(3n/2)*T*qi

Spherical Integration Quadrature

