
Overview of Monte Carlo Simulation 

Physical quantities follow certain distributions in some physics 

models. But it may be difficult to perform direct sampling because of 

the complexity of the state space. 

Markov Chain Monte Carlo (MCMC) methods: Construct a Markov 

chain with desired equilibrium distribution. Running the chain will 

give asymptotically right estimations of physical quantities. 

Underlying principle (Detailed balance): for all microstates x and 

y, if transition probability P(x,y) and P(y,x) satisfies: 

π(x)P(x, y) = π(y)P(y, x) 

The Markov chain, then, converges to an equilibrium probability 

distribution π at k. 

 

Two Dimensional Ising Model 

A ferromagnetism model 

statistical mechanics; Also 

useful in explaining atomic 

motions, thermodynamic 

systems and neuroscience. 

The model starts with a square 

lattice. In each position of the 

lattice sits an Ising spin, 

randomly initialized as pointing upward (magnetization +1) or 

downward (magnetization -1). 

The total energy E and total magnetization M of the a system could 

be defined as follows: 

E = −
J
2⁄ ∑ ∑ m(i, j)m(k, l)

(k,l)∈B(i,j)1≤i,j≤L

 

M = ∑ m(i, j)

1≤i,j≤L

 

J is the interaction strength; m(i,j) is the magnetization of the spin at 

position (i,j), B(i,j) denotes 

the set of spins that are 

adjacent to (i,j). Periodic 

boundary condition is 

applied. 

The probability of the 

system at some state s at temperature T follows the Boltzmann 

distribution: 

P(s; T) =
exp⁡(−βEs)

Z(T)
; ⁡β =

1

kBT
 

where kB is the Boltzmann constant and Z(T) is the normalizing 

constant, Es is the energy of the state. 

Metropolis-Hastings Algorithm on 2-D Ising Model 

Procedures for serial Metropolis algorithm: 

1. Randomly generate an initial state. 

2. Equilibration time, during which repeat at each step: 

i) Randomly choose a spin and propose a trail flip. 

ii) Calculate the energy difference ∆E if the flip accepted. 

iii) Accept the flip with a probability Pflip and otherwise retain 

the original microstate, where Pflip is given by: 

Pflip = min⁡*1, exp(−β∆E)+; ⁡β =
1

kBT
 

3. After the equilibration, at every step we 

i) Randomly choose a spin and propose a trail flip. 

ii) Accept the flip and store the physical quantities with a 

probability Pflip. 

iii) If the flip is accepted, update the state and record energy and 

magnetization data. 

At the end of simulation, we calculate the following physical 

properties of interest: 

Acceptance⁡ratio =
Number⁡of⁡Acceptances

Number⁡of⁡Monte⁡Carlo⁡Steps
 

Mean⁡energy⁡per⁡spin =
Eavg

L2
 

Mean⁡magnetization⁡per⁡spin =
|M|avg

L2
 

. 

Parallel Tempering 

Motivation: systems with low temperatures are easily trapped in 

“locally stable configuration”, resulting in extremely low 

convergence rate. Note that 

Pflip = min⁡*1, exp(−β∆E)+; ⁡β =
1

kBT
 

As⁡T → 0, β → ∞, exp(−β∆E) → 0⁡for⁡∆E > 0. 

The following shows trapped simulation in lower temperatures. 

 

 

In parallel tempering, we run several parallel systems randomly 

initialized. After equilibration, for every certain number of steps, 

configurations have a chance of being exchanged to the neighboring 

temperatures. The idea is to allow configurations at high 

temperatures to be travelled to low temperatures as the simulation 

process goes on, and rescue low temperature from fbeing trapped at 

the local minimum. 

For each processor, 

the exchange 

happens with its left 

neighbor and its 

right neighbor alternatively.  

The acceptance probability is 

Pexchange = min⁡*1, exp(∆βδE)+ 

∆β = β1 − β2; βi =
1

kBTi
 

δE = E1 − E2 

in the case of a replica exchange. 

 

 

Experiment Results 

The following graph shows how more frequent replica exchange will 

improve the convergence of simulation, particularly in lower 

temperatures. 

 

 

 

       

 

The leftmost state is more shuffled, which is more common in higher 

temperatures. Where the state in the middle is more ordered, and 

spins tend to align with each other. These states characterized by 

low energy are common in lower temperature. The rightmost state 

is a “local minimum state”. It is hard to move to any other states 

although it is not the global energy minimum. 

 

Simulation runs on size 80*80, with 109 equilibration time and MC steps, 96 processors. 

Temperatures are in unit of J, the interaction constant, with Botzmann constant set to 1. 
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Fig 1: A particular state of a 4×4 Ising model 

 

Fig 2: Density curves of Boltzmann distribution with 

respect to energy at different temperatures 

 

Fig 3: Results of an 80×80 Ising model with 109 equilibration, 109 Monte Carlo steps 

 

Fig 4: An illustration of exchange process in the case of five systems 

 

Fig 5: Results of an 80×80 Ising model with 109 equilibration, 109 Monte Carlo steps 

 

Fig 6 Illustration of three possible states in a 5*5 Ising Model 
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