Parallel Tempering Algorithm in Monte Carlo Simulation

Tony Cheung (CUHK)
Kevin Zhao (CUHK)

Mentors:
Ying Wai Li (ORNL)
Markus Eisenbach (ORNL)
Kwai Wong (UTK/ORNL)

Metropolis Algorithm on Ising Model

- Reason: difficulty of direct sampling
- Objective: compute average physical quantities of interest
- Idea: generate microstates according to Boltzmann distribution (canonical ensemble) after sufficient number of steps
- Boltzmann distribution: $P(s ; T)=\frac{\exp \left(-\beta E_{s}\right)}{Z}, \beta=\frac{1}{K T}$
- Underlying principle: detailed balance

\uparrow	\downarrow	\uparrow	\downarrow	Spins $_{i}$
\downarrow	\uparrow	\downarrow	\downarrow	
\downarrow	\downarrow	\uparrow	\uparrow	
\downarrow	\uparrow	\uparrow	\downarrow	

Metropolis Algorithm on Ising Model

- Simulation process

1. Randomly initialize the model
2. Choose a spin at random \& make a trial flip
3. Accept the flip with probability

$$
P_{\text {flip }}=\min \{1, \exp (-\beta \Delta E)\}, \beta=\frac{1}{K T}
$$

4. If the flip is accepted, determine the desired physical quantities
5. Repeat steps 2-4 to obtain a sufficient number of microstates
6. Calculate the ensemble average of quantities

Parallel Tempering

- Recall: $\quad P_{\text {flip }}=\min \{1, \exp (-\beta \Delta E)\}, \beta=\frac{1}{K T}$
- Drawback: Low temperature
$\Rightarrow \quad$ Unlikely to accept flips with positive energy difference
$\rightarrow \quad$ Trapped in energy local minimum
- Motivation: Run Metropolis algorithm on different temperatures \& allow exchange of microstates
$\rightarrow \quad$ High-temperature configuration at low-temperature system
- The probability of accepting an exchange is given by

$$
P_{\text {exchange }}=\min \{1, \exp (\Delta \beta \Delta E)\}
$$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

$\mathrm{N}=$ \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

$$
\sim N=0
$$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

> N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

$$
\leadsto N=0 \quad N=9
$$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

> N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}
$-\mathrm{N}=9 \quad \mathrm{~N}=249$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

> N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}
$\triangle \mathrm{N}=249 \quad \sim \mathrm{~N}=10^{\wedge} 4$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

> N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

$$
\times N=10^{\wedge} 4 \quad-N=10^{\wedge} 7
$$

Temperature dependence of mean magnetization per spin with various replica exchange frequency

> N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

$$
\leadsto N=0 \quad N=10^{\wedge 7}
$$

Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

$\mathrm{N}=$ \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

Temperature dependence of energy fluctuation (SD) with various replica exchange frequency

N = \# of replica exchange

Total \# of MC steps fixed to be 10^{9}; equilibration time set to 10^{9}

Running Time Dependence on \# of Replica Exchanges

Coming soon

- Parallel tempering Metropolis running with:
- Various temperature spacing (\# of processors)
- Different exchange patterns
- Geometric temperature sequence
- Implementation on other models
- Goal: optimize the algorithm
- Better convergence with less time
- Self adjusting algorithms

