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Monte Carlo Algorithms

 Motivation: Difficulty in direct sampling

* |dea: Construct a Markov chain with
desired equilibrium distribution

=» Estimate with Bayesian inference
* Underlying principle:

Detailed balance condition with a certain
transition probability

7(xX)P(xy)=r(y)P(y,x)



Boltzmann Distribution

Canonical ensemble for systems taking
discrete values of energy

The most common ensemble in statistical
mechanics

Probability distribution: P& 7)=eT—E£/klF
7 /Z(7)
Objective:
Employ Monte Carlo algorithms to
calculate physical quantities of interest



N-vector Model

Mathematical model of ferromagnetism in statistical
mechanics

Square/cubic lattice containing magnetized spins

with dimension N
— N =1 = Ising model
— N =2 => XY model
— N =3 =>» Heisenberg model
— N =4 =» Standard model

Physical Quantities

Hamiltonian:

Magnetization:



Metropolis Algorithm

* Transition probability:  AJf/ip =min{1,eT
—AE/IIB T}
* Flow
1. Generate an initial state randomly
2. Equilibration time, during which at each
step:
© Choose a spin randomly and propose a trail flip

® Accept the flip with a probability Py, , or
otherwise retain the original state



Metropolis Algorithm

* Flow (Cont’d)
3. Sampling time, during which at each step:

© Choose a spin randomly and propose a trail flip
® Accept the flip with a probability Pqip @nd store
the physical quantites, or otherwise retain the
original state
4. Calculate the average physical quantities

of interest



Kraken XT5

* Located in ORNL
* Cray Linux Environment (CLE) 3.1

* 9408 computed node, each with 12 cores & 16
GB memory

http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/images/kraken-high-right-425.jpg



Experiment 1: 2D Ising

* 10° equilibration steps & 10° sampling steps
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Drawback of Metropolis Algorithm

* Low convergence rate at low temperatures

* Reason: For lower temperature systems,

For AE>0,PLflip =min{l,eT-AL/kIB T } =0

For AE<O,PLflip =min{l,eT-AE/KIF T } =1
=>» trapped in energy minimum

=» fail to generate states according to
Boltzmann distribution



Parallel Tempering

* Objective:
Run Metropolis Algorithm on
different temperatures & allow

exchange of states every certain
amount of sampling steps

=» High-temperature configurations
apply to low-temperature systems &
rescue them from being trapped

Plexchange =min{l,eTALOF } =0;=1//IB T



Experiment 2: 2D Ising model

e 10° equilibration steps & 10° sampling steps

* Varying number of evenly-distributed exchanges
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Experiment 2: 2D Ising model

e 10° equilibration steps & 10° sampling steps

* Varying number of evenly-distributed exchanges
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Mean magnetization per spin
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Experiment 2: 2D Ising model
e 10° equilibration steps & 10° sampling steps
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* Varying number of evenly-distributed exchanges
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Experiment 3
Convergence of magnetic susceptibility

100*100 2-D Ising Model (square lattice)

* Total equilibration step = 1079
* Total Monte Carlo sampling step = 1079

* Temperature Range K,T=0.5(J) ~ 5.5 (J)
* 96 processors covering the temperature range

* Second moment requires more time to converge



Experiment 3
Convergence of magnetic susceptibility
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Experiment 3
Convergence of magnetic susceptibility
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Experiment 3
Convergence of magnetic susceptibility
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Experiment 3

Convergence of magnetic susceptibility
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Experiment 4
Geometric temperature spacing

100*100 2-D Ising Model (square lattice)

* Total equilibration step = 1079
* Total Monte Carlo sampling step = 1079
 Number of exchange = 1076

* Temperature Range K,T=0.5(J) ~ 5.0 (J)
e 96 processors covering the temperature range



Experiment 4
Geometric temperature spacing
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Experiment 4
Geometric temperature spacing

Replica exchange difficulty throughout temperature range
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Experiment 4
Geometric temperature spacing

Replica exchange difficulty throughout temperature range

Exchange acceptance ratio
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Adaptive temperature spacing




Adaptive temperature spacing
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Experiment 5
Adaptive temperature spacing

100*100 2-D Ising Model (square lattice)

* Total equilibration step = 1079
* Total Monte Carlo sampling step = 1079
 Number of exchange = 1074

* Temperature Range K,T=0.5(J) ~ 5.5 (J)
e 96 processors covering the temperature range



Experiment 5
Adaptive temperature spacing

Replica exchange difficulty with/without adaptive spacing
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Experiment 5
Adaptive temperature spacing

Magnetic Susceptibility with/without adaptive temp spacing
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Experiment 5
Adaptive temperature spacing
Magnetic Susceptibility with regular & adaptive spacing
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Implementation on other models
2-D Heisenberg Model

100*100 2-D Heisenberg Model (square lattice)

* Total equilibration step = 1079
* Total Monte Carlo sampling step = 1079
 Number of exchange = 1074

* Temperature Range K, T=0.10 (J) ~ 4.25 (J)
* 180 processors covering the temperature range



Magnetic Susceptibility

Implementation on other models
2-D Heisenberg Model
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Implementation on other models
2-D Heisenberg Model
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Magnetic Susceptibility

Implementation on other models
2-D Heisenberg Model
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Implementation on other models
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Implementation on other models
3-D Heisenberg Model

25*%25%25 3-D Heisenberg Model (square lattice)

* Total equilibration step = 1079
* Total Monte Carlo sampling step = 1079
 Number of exchange = 1074

* Temperature Range K, T=0.30 (J) ~ 4.50 (J)
e 192 processors covering the temperature range



Implementation on other models
3-D Heisenberg Model
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Implementation on other models
3-D Heisenberg Model
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Future Direction:
Interoperable Executive Library (IEL)

* Software framework used for multi-physics
simulations

* Designed to execute & schedule in parallel a
series of physics solvers

* Objective: Run parallel tempering on different
parameter spaces with data & information
change on shared boundaries



