Parallel Tempering Algorithm in Monte Carlo Simulation

Tony Cheung (CUHK) Kevin Zhao (CUHK)

Mentors: Ying Wai Li (ORNL) Markus Eisenbach (ORNL) Kwai Wong (UTK/ORNL)

Monte Carlo Algorithms

- Motivation: Difficulty in direct sampling
- Idea: Construct a Markov chain with desired equilibrium distribution
 - Estimate with Bayesian inference
- Underlying principle:

Detailed balance condition with a certain transition probability

 $\pi(x)P(x,y) = \pi(y)P(y,x)$

Boltzmann Distribution

- Canonical ensemble for systems taking discrete values of energy
- The most common ensemble in statistical mechanics
- Probability distribution: $P(E;T) = e \uparrow -E/k \downarrow B$ T/Z(T)

• Objective:

Employ Monte Carlo algorithms to calculate physical quantities of interest

N-vector Model

- Mathematical model of ferromagnetism in statistical mechanics
- Square/cubic lattice containing magnetized spins with dimension N
 - N = 1 \rightarrow Ising model
 - N = 2 \rightarrow XY model
 - N = 3 \rightarrow Heisenberg model
 - N = 4 \rightarrow Standard model
- Physical Quantities

Magnetization: $M = \sum i \uparrow m S \downarrow i$

http://rutgersscholar.rutgers.edu/volume02/cowldevl/fig1.jpg

Hamiltonian: $H = -I \sum \langle i, j \rangle \uparrow = \langle s \downarrow i, s \downarrow j \rangle$

Metropolis Algorithm

- Transition probability: $P \downarrow f lip = \min\{1, e^{\uparrow}\}$ $-\Delta E/k \downarrow B T \}$
- Flow
 - 1. Generate an initial state randomly
 - 2. Equilibration time, during which at each step:
 - Choose a spin randomly and propose a trail flip
 - Accept the flip with a probability P_{flip}, or otherwise retain the original state

Metropolis Algorithm

- Flow (Cont'd)
 - 3. Sampling time, during which at each step:
 - Choose a spin randomly and propose a trail flip
 - Accept the flip with a probability P_{flip} and store the physical quantites, or otherwise retain the original state
 - 4. Calculate the average physical quantities of interest

Kraken XT5

- Located in ORNL
- Cray Linux Environment (CLE) 3.1
- 9408 computed node, each with 12 cores & 16 GB memory

http://www.nics.tennessee.edu/sites/www.nics.tennessee.edu/files/images/kraken-high-right-425.jpg

Experiment 1: 2D Ising

• 10⁹ equilibration steps & 10⁹ sampling steps

Drawback of Metropolis Algorithm

- Low convergence rate at low temperatures
- Reason: For lower temperature systems,

For $\Delta E > 0$, $P \downarrow f lip = \min\{1, e \uparrow - \Delta E / k \downarrow B T\} \approx 0$

For $\Delta E < 0$, $P \downarrow f lip = \min\{1, e \uparrow -\Delta E / k \downarrow B T\} = 1$

- trapped in energy minimum
- fail to generate states according to Boltzmann distribution

Parallel Tempering

• Objective:

Run Metropolis Algorithm on different temperatures & allow exchange of states every certain amount of sampling steps

 High-temperature configurations apply to low-temperature systems & rescue them from being trapped

 $P \downarrow exchange = \min\{1, e \uparrow \Delta \beta \delta E\} \approx 0; \beta = 1/k \downarrow B T$

Experiment 2: 2D Ising model

- 10⁹ equilibration steps & 10⁹ sampling steps
- Varying number of evenly-distributed exchanges

Experiment 2: 2D Ising model

- 10⁹ equilibration steps & 10⁹ sampling steps
- Varying number of evenly-distributed exchanges

Experiment 2: 2D Ising model

- 10⁹ equilibration steps & 10⁹ sampling steps
- Varying number of evenly-distributed exchanges

- 100*100 2-D Ising Model (square lattice)
- Total equilibration step = 10^9
- Total Monte Carlo sampling step = 10^9
- Temperature Range $K_b T = 0.5 (J) \sim 5.5 (J)$
- 96 processors covering the temperature range
- Second moment requires more time to converge

- 100*100 2-D Ising Model (square lattice)
- Total equilibration step = 10^9
- Total Monte Carlo sampling step = 10^9
- Number of exchange = 10⁶
- Temperature Range $K_b T = 0.5 (J) \sim 5.0 (J)$
- 96 processors covering the temperature range

Replica exchange difficulty throughout temperature range

Replica exchange difficulty throughout temperature range

- 100*100 2-D Ising Model (square lattice)
- Total equilibration step = 10^9
- Total Monte Carlo sampling step = 10^9
- Number of exchange = 10⁴
- Temperature Range $K_b T = 0.5 (J) \sim 5.5 (J)$
- 96 processors covering the temperature range

Replica exchange difficulty with/without adaptive spacing

Magnetic Susceptibility with/without adaptive temp spacing

Magnetic Susceptibility with regular & adaptive spacing

- 100*100 2-D Heisenberg Model (square lattice)
- Total equilibration step = 10^9
- Total Monte Carlo sampling step = 10^9
- Number of exchange = 10⁴
- Temperature Range $K_bT = 0.10 (J) \sim 4.25 (J)$
- 180 processors covering the temperature range

- 25*25*25 3-D Heisenberg Model (square lattice)
- Total equilibration step = 10^9
- Total Monte Carlo sampling step = 10^9
- Number of exchange = 10⁴
- Temperature Range $K_bT = 0.30 (J) \sim 4.50 (J)$
- 192 processors covering the temperature range

Future Direction: Interoperable Executive Library (IEL)

- Software framework used for multi-physics simulations
- Designed to execute & schedule in parallel a series of physics solvers
- Objective: Run parallel tempering on different parameter spaces with data & information change on shared boundaries