
Joint Institute for
Computational Sciences Computational

Sciences

A hybrid method for the Cholesky factorization of large dense
SPD matrices.

Combine two standard procedures together: right-looking
method and left-looking method.

The problem matrix is stored in host CPU memory (out-of-core)
 High amount of data storage

O�oad heavy computational parts to devices (in-core)
 High computational power
 GPU and MIC

OVERVIEW

OOC CHOLESKY FACTORIZATION ALGORITHM

Btmp

dA

Atmp

For each panel, compute left-looking updates:
With every factorized block-columns on
 the left, update dA <- dA - Atmp x Btmp by
 subroutine Cpdsyrk_hhd
Involve host-host-device data transfer
 using BLACS and CUBLAS
Compute by calling dsyrk (diagonal part)
 and dgemm (o�-diagonal part) of CUBLAS

Followed by right-looking updates:
For every block along the diagonal,
call pdpotrf to obtain its lower triangular factor;
call pdtrsm to update the submatrix under the block;
call Cpdsyrk_hhd to update the trailing matrix with the
 updated column

Chop the matrix into panels
 The panel is transferred to core
 Size of panel is limited to core memory
 Di�erent ways of determining each panel size can �ne-
 tune the performance

 There is an existing implementation of the algorithm in double precision
using GPU as core devices. ScaLAPACK is used for calculation within host CPU;
CUBLAS is used for calculation within the device GPU.

Data distribution
2D-block-cyclic distribution on an adjustable rectangular process grid
Stored in column-major order

General Procedure:

15x15 PROCESS GRID CASE
Machine: Keeneland
Test case:
 Problem size = 360000
 Block size = 32
 Process grid = 15x15
 Panel division = two equal-width panels

177.4 Left-looking update Cpdsyrk_hhd 5625
 88.0 Host-host data transfer
 25.1 host-device data transfer
 64.0 Computation of dsyrk, dgemm

time /second Procedure number of calls

Timing results

1.4 Copy panel host-device 2

241.1 Right looking column factorization 11250
 11.2 Host-device data transfer
 229.8 Computation of pdpotrf, pdtrsm

159.3 Right-looking update Cpdsyrk_hhd 11248
 74.7 Host-host data transfer
 16.4 host-device data transfer
 67.5 Computation of dsyrk, dgemm

Total time = 579.9 seconds
Overall performance = 118.8 GFLOPS/PROC
 (vs GPU peak performance 665 GFLOPS)

 Host-host data transfer is shown to be a dominating cost of time. Its analysis is
helpful for understanding the behavior of the algorithm when we further scale up
the problem size.

QUANTIFYING HOST-HOST DATA TRANSFER AMOUNT

 Problem size, grid size and panel division policy are factors determining the
amount of host-host data transfer. For a typical case with two equal-width panels,
we can consider the transfer in right-looking part and left-looking part separately.

Left-looking part Right-looking part

Red area x Q and yellow area x P gives an upper bound of the data transfer amount,
where Q is the number of columns, P is the number of rows in the processor grid.

Out-of-Core Cholesky Factorization Algorithm on GPU and
the Intel MIC Co-processors

Ben Chan, Nina Qian (Chinese University of Hong Kong)
Mentors: Ed D’Azevedo (ORNL), Shiquan Su (UTK), Kwai Wong (UTK)

APPLICATION: LARGE SCALE RADIOSITY PROBLEM

Thermal radiosity problem exists in thermal engineering and other �elds. It helps
 us to obtain temperature information or generate realistic di�use re�ection. View
 factor measures the radiation which leaves surface 1 and strikes surface 2.

For each pair of surfaces that are facing each other generate a potential
 obstruction list by several excluding tests which eliminate the number of
 obstructing surfaces.

If the potential obstruction list is empty after tests, then use an appropriate
 view factor formulation to calculate for the unobstructed pairs. If not, then
 project shadow to the surface of object surface to do further obstruction test
 and calculation.

GPU-based parallel version of View3D decomposes the matrix to each
 processor and command CPU to calculate the obstructed pairs. GPU is
 supposed to calculate all the view factors and pass the unobstructed data
 back to CPU.

By Stepthen-Boltzmann’s equation, , where .
 Symmetry of matrix G is assured in view factor formulations (),
 also the diagonal dominates other entries. Hence the transformed matrix G of
 view factor matrix F is an SPD matrix which can be solved using OOC algorithm.

Transformed radiosity matrix G

CONTACT INFO

Ed D’Azevedo
dazevedoef@ornl.gov

Shiquan Su
ssu2@utk.edu

Kwai Wong
kwong@utk.edu

Background

Brief Algorithm

View Factor Matrix to SPD Matrix

Radiosity problem in computer science, objects in space
divided into subsurface to calculate view factor.
 https://www.cs.duke.edu/courses/cps124/spring04/notes/08_rendering/

