
Ø .
A Parallel Workflow Framework for Data and Compute Intensive Application

openDIEL : cfdlab.utk.edu/opendiel

What	is	OpenDIEL? Distributed	Tuple	Space

Rocco Febbo, Mentor : Kwai Wong

Acknowledgements

Future	Work

This project	is	made	possible	by	funding	provided	by	the	NSF,	computing	resources	
provided	by	the	University	of	Tennessee,	and	XSEDE.	In	addition,	the computing work
was also performed on technical workstations donated by the BP High
Performance Computing Team.

Graphical	User	Interface

Modules	and	Workflow		for	Applications

Ø Sending	data:	A	client	sends	data	to	the	
distributed	array	of	tuple	servers	by	
calling	IEL_dist_tput():	

Ø Distributes	data	among	available	tuple	
servers

Ø Stores	the	meta-data	on	the	first		tuple	
server

Ø Receiving	data:	A	client	receives	data	
stored	on	the	tuple	servers	by	calling	
IEL_dist_tget()

Ø Queries	the	meta	data	server	for	the	
information	using	tag

Ø Uses	the	meta	data	to	pull	the	data	from	
the	servers	

Ø Reconstructs	the	data	into	an	array	that	
the	client	passed	to	the	function

Ø The open Distributive
Interoperable Executive
Library (openDIEL) is a
parallel workflow
framework aims to run a
collection of a user’s
codes (serial and parallel)
collectively under a single
MPI executable on HPC
platforms.

Ø The user defines the
function modules and
schedules its workflow in
an input file.

Ø Communication among
modules can use the direct
or tuple space interfaces

Ø Incorporate ML framework

Ø A multicore single node program requires NO code changes, use normal
executable to run : openmp, cuda, scripts, python, java, matlab, …..

Ø A MPI parallel program will be run as a function, a wrapper is available to
convert a MPI programs to a function module.

Ø Modules attributes : automatic or managed mode, function name and input
arguments, I/O directory path, GPU, thread, core, copy, size….

Ø Workflow arrangement : sets run in parallel, groups run in parallel with
dependency, modules within a group run in sequential order

modules=(
{. function="MODULE-1";

args=("../hellomeexe");
libtype="static";
splitdir="HELLOME"
size=2 },

{. function="hello"
args=()
libtype="static"
copies=2
processes_per_copy=3
size=6
threads_per_process=4
cores=24 },

)

set1:
{

num_set_runs=3
group1:
{ order=("MODULE-1", "MODULE-2","MODULE5")

iterations=2 },
group2:
{ order=(”hello")

iterations=2. },
group3:
{. order=("MODULE-4")

iteration=1
depends=("group1", "group2") }

},

Ø Modules	may	use	a	distributed	array	of	tuple	servers	to	store	data	in	system	
memory	that	other	modules	may	access.	

Ø The	sender	places	the	data	using	IEL_dist_tput()	and	a	user-defined	data	tag	as	an	
argument	of	the	function.	

Ø The	receiver,	using	the	same	tag	and	the	IEL_dist_tget()	function	will	be	able	to	
retrieve	the	data	from	the	distributed	array.	

How	Does	the	Grid	Engine	Work?
The	Grid	Engine	manages	a	trainer	and	a	set	

of	trainees,	each	one	its	own	process.	The	
number	of	trainees	depends	on	how	big	the	
OpenDIEL module	size	is	and	how	many	MPI	
process	are	allocated.	The	trainee	sends	
hyperparameters to	an	OpenDIEL Tuple	Server	
and	the	trainees	receive	that	data,	train,	then	
report	their	accuracies	to	the	Tuple	Server.	The	
trainer	receives	the	accuracies	and	saves	them	
to	a	file.	It	is	designed	to	work	with	different	
search	methods	and	different	trainees.	It	has	
currently	been	tested	using	a	grid	search	
method	and	a	MagmaDNN trainee.	On	the	
right	is	the	result	after	training	over	a	3D	grid	
space.The above pictures display the widgets which enable users to easily create modules or

load existing modules to be ran with openDIEL. Once the user has either created or
loaded their modules, they can proceed to create the workflow section for the modules.
Then with the click of a button the configuration file that openDIEL uses will be created.
The number of mpi processes will be calculated behind the scenes and the users example
is ready to be launched.

Since	hyperparameter tuning	is	so	computationally	intensive	it	is	desirable	
to	have	a	distributed	system	which	manages	the	process.	Thankfully,	the	
process	is	inherently	parallelizable	due	to	the	small	amount	of	data	required	to	
do	a	very	large	amount	of	work.	OpenDIEL is	well	suited	for	this	task	due	to	its	
ability	to	handle	intensive	data	and	compute	workloads

OpenDIEL	Grid	Engine

How	Does	the	Tuple	Server	Work?
The	Tuple	Server	is	contained	in	it’s	own	

process.	It	acts	like	a	storage	container.	
Every	piece	of	data	is	added	to	the	Tuple	
Server	along	with	a	unique	`tag`	represented	
by	an	integer.	The	`tag`	is	how	that	data	is	
then	later	accessed	by	other	processes.

How	Do	You	Interface	With	the	Grid	Engine?
To	train	across	a	grid	you	only	need	to	provide	a	parameter	configuration	file	as	

seen	below.	However,	the	OpenDIEL	Grid	Engine	supports	the	ability	to	add	different	
search	methods	and	trainee	types.	It	also	supports	training	across	different	

hyperparameters	such	as	network	structure.	Currently	implemented	are	the	grid	
search	method	and	a	MagmaDNN	trainee.		Below	is	an	example	of	how	the	trainer	

can	communicate	with	the	trainees.

A	Trainer	Communicating	with	an	arbitrary	
number	of	trainees

An	Example	Configuration	File	for	a	Grid	Search	Across	1000	Parameters

Ø Finish	preparation	of	OpenDIEL for	open	source	release
○ Extend	testing	suite
○ Create	documentation	and	tutorials	on	use	of	OpenDIEL

Ø Add	the	ability	to	train	across	custom	parameters	in	the	grid	engine
Ø Add	new	search	methods	such	as	PBT	to	the	grid	engine
Ø Add	new	trainee	types	such	as	TensorFlow to	the	grid	engine

Machine	Learning	– MagmaDNN
� A machine learning framework built around the Magma BLAS aimed at

providing a modularized and efficient tool for training deep nets.
Ø MagmaDNN makes use of the highly optimized Magma BLAS giving

significant speed boosts over other modern frameworks.

