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Abstract
This analysis focuses on a smartphone app known as ‘‘Transit’’ that is used to unlock shared bicycles in Chicago. Data from
the app were utilized in a three-part analysis. First, Transit app bikeshare usage patterns were compared with system-wide
bikeshare utilization using publicly available data. The results revealed that hourly usage on weekdays generally follows classi-
cal peaked commuting patterns; however, daily usage reached its highest level on weekends. This suggests that there may be
large numbers of both commuting and recreational users. The second part aimed to identify distinct user groups via cluster
analysis; the results revealed six different clusters: (1) commuters, (2) utility users, (3) leisure users, (4) infrequent commu-
ters, (5) weekday visitors, and (6) weekend visitors. The group unlocking the most shared bikes (45.58% of all Transit app
unlocks) was commuters, who represent 10% of Transit app bikeshare users. The third part proposed a trip chaining algo-
rithm to identify ‘‘trip chaining bikers.’’ This term refers to bikeshare users who return a shared bicycle and immediately
check out another, presumably to avoid paying extra usage fees for trips over 30 min. The algorithm revealed that 27.3% of
Transit app bikeshare users exhibited this type of ‘‘bike chaining’’ behavior. However, this varied substantially between user
groups; notably, 66% of Transit app bikeshare users identified as commuters made one or more bike chaining unlocks. The
implications are important for bikeshare providers to understand the impact of pricing policies, particularly in encouraging
the turn-over of bicycles.

Bikesharing has grown rapidly in recent years. In the
United States, only 320,000 trips were made by bikeshare
in 2010; by 2017, there were approximately 35 million
bikeshare trips (1). This increase is the result of signifi-
cant investment in infrastructure (2) as well as the per-
ceived benefits of bikesharing services, including
congestion mitigation (3), travel time savings for users
(4), and health benefits associated with active lifestyles
(5–7).

Although increasing bikesharing can be beneficial, it
also brings challenges for management and operations.
To effectively manage the system, a good understanding
of bikeshare usage patterns is critical (8). Prior research
on bikeshare usage patterns often relies on data collected
via travel surveys (2, 9, 10); however, the small sample
size and cross-sectional nature of most surveys typically
do not allow for longitudinal analyses at the individual
or system level. Many other prior studies of bikeshare
usage have relied on publicly available trip data from
bikeshare operators, which usually contain geographical
and temporal information for each bikeshare trip.
However, these datasets typically lack a unique identifier

for each user, so analysis of individual patterns over time
is not possible (11). Hence, there is a gap in the prior lit-
erature pertaining to longitudinal analysis of individual
bikeshare user behavior.

This paper aims to address this by investigating bike-
share user behavior over a 3-month period in Chicago.
We utilize data from a smartphone app known as
‘‘Transit’’ that can unlock shared bicycles. This dataset
advantageously allows for analysis of individual bike-
share user patterns over time because app interactions
are assigned an anonymized unique identifier. We con-
duct a three-part analysis of user behavior. First, Transit
app bikeshare usage patterns are compared with system-
wide bikeshare utilization in an exploratory analysis of
temporal patterns. In the second part, a cluster analysis
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of Transit app bikeshare users is conducted to identify
groups exhibiting similar behaviors. The third part pro-
poses a trip chaining algorithm to identify ‘‘bike chain-
ing.’’ This term is introduced to refer to bikeshare users
who return a shared bicycle and immediately check out
another, presumably to avoid paying extra usage fees for
trips over 30 min; this analysis is motivated by anecdotal
evidence of this practice (12). The implications are
important for bikeshare providers to understand the
impact of their pricing policies, particularly in encoura-
ging the turn-over of shared bicycles.

Prior Research

As previously noted, prior research on bikeshare usage
patterns has often relied on data collected via travel sur-
veys (3, 9, 10). Recently, there has been an increase in
studies examining bikeshare using trip-level data pro-
vided by bikeshare operators, which generally includes
the time and location of bike unlocks or relocks at sta-
tions (13). Numerous prior studies have exploited the
spatiotemporal nature of bikeshare trip data, and one
increasingly common method used to analyze geographic
patterns is cluster analysis. For example, one early study
using clustering methods on bikeshare trip data con-
ducted in 2009 applied hierarchical clustering by station.
The docking stations were classified by usage frequency
and three cycling patterns were identified: outgoing
(many unlocks in the morning and locks in the evening),
incoming (many locks in the morning and unlocks in the
evening), and flat patterns (relatively constant usage over
the day) (14). A few more recent studies have conducted
similar analyses by grouping stations in London and
Paris by their temporal utilization (15–17). In 2013, the
spatial characteristics of bikesharing trip data for Vienna
were used to classify stations into communities, provid-
ing more in-depth insight into the relationship between
places of activity and bikesharing (18). More recently,
various clustering methods have been used to categorize
bikeshare flow patterns (5, 19) and help with fleet reba-
lancing (20). Among these numerous cluster analysis
studies, few if any have considered classifying users at the
individual level by trip purpose. Therefore, this research
aims to explore trip purpose-related patterns of user
groups by exploiting a new, individual-level dataset from
a smartphone app.

Two prior studies motivated this research. The first study
analyzed temporal usage patterns of 38 bikeshare systems
across the globe. The authors proposed a qualitative frame-
work to categorize cities by their likely type(s) of bikeshare
users, which included four groups: commuters, utility users,
leisure users, and tourist users (11). Commuters usually rent
bicycles to travel between home and work or between home
and transit stations on weekdays during rush hour (6–10

a.m. and 4–8 p.m.). Utility users typically utilize bikeshare
on the weekdays for shopping and errands. Leisure users
generally ride on the weekends for fun and exercise. Tourist
users generally ride shared bicycles to destinations such as
the beach or to explore the city. This framework will serve
as an initial hypothesis for the trip purpose-based classifica-
tion proposed in this paper, and we will expand on it using
cluster analysis.

The second noteworthy study examined the cost sensi-
tivity of bikeshare users in Boston and Washington, D.C.
using publicly available trip data. Trip lengths were ana-
lyzed, and the results reveal that riders often return bicycles
just before additional usage fees are charged (typically at
the 30-min mark). Moreover, registered users tend to
return bikes just before the 30-min payment boundary
more frequently than casual users (21). This study inspired
our investigation of ‘‘bike chaining,’’ in which bikeshare
users chain trips to avoid paying additional fees.

Background

This section provides relevant background information
on the bikesharing system in Chicago and the smart-
phone app that is the focus of this analysis.

Background on Chicago’s Bikesharing System

The bikesharing system in Chicago is known as Divvy.
The Divvy bikeshare system was initially launched in
2013, and over the last 5 years it has grown to over 6,000
bikes at 570+stations in Chicago and the nearby suburb
of Evanston (22). To use a shared bicycle, travelers can
‘‘unlock’’ a bike from a Divvy station after paying at a
kiosk or via their smartphone. During the period of anal-
ysis considered in this paper (2016), the only native
smartphone application that could be used to unlock
Divvy bikes was the Transit app; however, since then,
other apps have become available for unlocking Divvy
bicycles.

The price to use a Divvy bike is shown in Table 1.
Notably, Divvy adjusted its pricing policy in February of
2018 and both the previous pricing policy (2016) and the
current pricing policy (2018) are shown in the table. In
2016, which is the time frame considered for the follow-
ing analysis, the pricing structure included an annual
pass for US$99 and a 24-h pass for $9.95. With either
option, riders had 30 min to use a shared bike, and after
that, they were charged an additional usage fee. Since
this analysis was conducted, Divvy has changed their
pricing policy, and now annual pass users have 45 min to
complete a trip and 24-h pass users have 3 h. This adjust-
ment was reportedly made to accommodate high utiliza-
tion levels by visitors (23) and to simplify the pricing
policy for additional charges (24).
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Background on the Transit Smartphone Application

The Transit app is a free smartphone application provid-
ing urban transportation information in more than 175
cities around the world. Its most used feature is real-time
transit information. The app also integrates other shared
mobility services such as ridehailing, carsharing, or bike-
sharing in some cities. Since 2015, users have been able to
purchase bikeshare passes and unlock bikeshare bicycles
directly from the Transit app in some cities in the United
States and Canada (25), and this feature was launched
for Chicago in 2016. To use the app for bikeshare, a user
selects a bikeshare station on the map or taps the bike-
share card below the map, as shown in Figure 1a. The
first time a user utilizes this feature, s/he has the choice to
sign in if s/he already has a bikeshare membership or to
purchase a 1-day pass directly from the Transit app (as
of 2016). To purchase a daily pass, s/he must create an
account by completing the form shown in Figure 1b.
Once the user has an account and is logged in, s/he can
tap the ‘‘Get a Bike’’ icon (shown in Figure 1a), and a
five-digit code will be displayed (Figure 1c). Finally, s/he
selects a bike at a bikeshare station and enters the five-
digit code to unlock the bike.

Dataset

The primary dataset for this analysis is from the Transit
app. Three months of data (from May 23 to August 21)
in 2016 were utilized. The dataset includes, among other
things, a device identifier (ID) assigned to each smart-
phone that has downloaded the app, the location (lati-
tude/longitude) of the station where the bike was
unlocked, and a timestamp. Notably, the data does not
contain any personally identifiable information to pre-
serve users’ anonymity.

The raw dataset was cleaned in the following manner.
First, the dataset was processed to keep only bikeshare

unlocks. Users can interact with the Transit app in
numerous ways, such as signing into a bikeshare account.
Therefore, the dataset was filtered to include only inter-
actions corresponding to receiving a code that could then
be used to unlock a bicycle. Second, some users requested
several codes at the same station within a short time
interval. These records might correspond to users who
did not reach the bikesharing station within a time limit
during which the unlock code must be used (i.e., Divvy
unlock codes expire within 5 min if they are not used) or
users who obtained a code for a station that did not have
any bicycles remaining. To account for this, we removed
records at the same station within a 10-min interval, and
only the last unlock was retained, since only one unlock
likely corresponded to an actual trip. After the data
cleaning, 125,570 unlocks made by 11,446 unique Transit
app bikeshare users (by device ID) remained.

Analysis

The analysis was conducted in three primary parts. First,
an exploratory analysis of temporal bikesharing usage
was performed to investigate patterns and compare
Transit app data with system-wide data. The second
analysis classified individual Transit app bikeshare users
into groups using cluster analysis. The third part exam-
ined individuals’ daily bikeshare usage patterns to iden-
tify trip chaining and explore the potential impacts of
the bikeshare pricing policy on different user groups.

Part 1: Exploratory Analysis of System Trends

The first analysis assessed trends in bikesharing utiliza-
tion over time in Chicago. The results of the temporal
pattern analyses are shown in Figure 2. Transit app
unlocks are shown in orange and system-wide trips from
the Divvy operator’s website are shown in blue (25).
According to the system-wide Divvy trip dataset that is

Table 1. Pricing Structure for the Divvy Bikesharing System

2016 2018

Annual membership 24-h pass Annual membership Explore (24-h) pass Single ride

Base fee $99 $9.95 $99 $15 $3

0–30 min $0 $0
$0

$0

$0

31–45 min
$1.50 $2

+$3 for each
additional 30 min

46–60 min

+$3 for each
additional 30 min

61–90 min $4.50 $6

91–180 min
+$6 for each
additional 30 min

+$8 for each
additional 30 min

181+min +$3 for each
additional 30 min

Yang et al 3



publicly available, there were a total of 1,464,585 bike-
sharing trips during the 3-month study period, and 76%
of the trips were taken by bikesharing annual members
(25). The use of Transit app in Chicago represents
approximately 8.6% of all bikesharing trips during this
time period; however, Chicago likely has different
Transit app utilization levels now because this dataset is
more than 2 years old.

As shown in Figure 2a, the mean number of unlocked
bikes per hour in a day shows classical peaking patterns,
which is typical of commuting patterns (13). The number
of trips per day in the selected 3 months is shown in
Figure 2b, and it exhibits some fluctuations. Some level
of fluctuation might correspond to poor weather (26).
For instance, it was rainy with mist and haze on May 31,
July 24, and August 12, and these days show lower levels
of bikeshare use in the graph. Additionally, there are
high levels of daily utilization on most Saturdays, partic-
ularly July 16, which may correspond to tourism, recrea-
tional use, or both.

Figure 2c presents average bikeshare use by day of the
week during the 3-month study period. Two main peaks
are observed during weekdays: one in the morning, most
likely corresponding to commuting trips and a higher
peak in the evening, most likely corresponding to a com-
bination of evening commuting trips and leisure trips.
One reason for a smaller morning peak period may be
hygiene; the lack of shower access at work could be a
barrier to bikesharing in the morning (27). There is also
a smaller weekday peak at lunch time. During weekends,
ridership seems to be more regular across time, probably

corresponding to leisure or recreational trips. Lastly, the
peak on weekends is typically lower than on weekdays.

Overall, these results suggest that trip purpose may
vary between bikeshare users. Figure 2b shows high levels
of utilization on Saturdays, which likely corresponds to
recreational and tourism usage. On the other hand,
Figure 2c, has classical weekday peaking patterns appear-
ing in the morning and evening, which is likely for com-
muting purposes.

Lastly, the graphs shown in Figure 2 suggest that the
smaller Transit app dataset follows similar temporal pat-
terns as the larger, publicly available Divvy trip dataset.
To further explore this, the Kolmogorov–Smirnov test
was used to compare the two datasets shown in Figure 2
by hours in a day, by day, and also by hours in a week.
The corresponding p-values were 0.90, 0.23, and 0.92 (by
hours/day, days, and hours/week, respectively). All three
p-values were larger than 0.05, and therefore, we cannot
reject the hypothesis that the two distributions are the
same. Thus, it is reasonable to argue that the Transit app
dataset is representative of the Divvy dataset (by hours/
day, hours/week, and days).

Part 2: Cluster Analysis to Identify User Groups

The results of the exploratory analysis in Part 1 suggest
that bikeshare may be used for different purposes in
Chicago (e.g., commuting, recreation). Moreover, the
previous literature has found at least four different
groups of users in bikeshare systems: commuters, utility
users, recreational users, and tourist users (11).

Figure 1. Transit app screenshots: (a) transit and bikeshare information , (b) create bikeshare account, and (c) bikeshare unlock code.

4 Transportation Research Record 00(0)



Therefore, we hypothesized that there are multiple
groups of bikeshare users in Chicago, and to explore
this, a cluster analysis was conducted. We designed sev-
eral variables to describe each Transit app bikeshare
user, and the correlation between variables was
checked to assure that they were sufficiently different.
Then, the following four variables were selected for this
analysis:

� Days of use: The total number of days in the 3
months an individual user (by device ID) unlocked
bikeshare bicycles using the Transit app. This vari-
able is designed to distinguish frequent users from
infrequent users.

� Duration of days: For every user (by device ID) d,
the duration of days T dð Þ is defined as the time
interval between the first day of Transit app bike-
share use F dð Þand the last day of use L dð Þ, for
which the day is expressed as an integer from the
start of the year; for example, January 1 is
expressed as 1. When a bikeshare user has unlocks
throughout the 3-month study period, it implies
that s/he is likely a resident of Chicago. Therefore,
we designed this variable to judge whether a user
is likely to live in the city or may be a visitor.

T dð Þ= L dð Þ � F dð Þ ð1Þ

Figure 2. Results of temporal pattern analyses: (a) average number of unlocked bikes per hour in a day, (b) number of unlocked bikes
per day, and (c) average number of unlocked bikes per hour in a week.
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� Weekday usage rate: For every user (by device ID)
d, the weekday usage rate W dð Þ is calculated by
dividing the number of Transit app bikeshare
unlocks per weekday BW dð Þ by the total number
of unlocks taken in the 3 months U dð Þ. This vari-
able is intended to differentiate between potential
weekday user groups (e.g., commuters, utility
users) and potential weekend user groups (e.g., lei-
sure users, visitors).

W dð Þ= BW dð Þ
U dð Þ ð2Þ

� Rush hour usage rate: For every user (by device
ID) d, the rush hour usage rate R dð Þ is calculated
by dividing the number of Transit app bikeshare
unlocks during rush hour BR dð Þ by the total num-
ber of Transit app bikeshare unlocks taken in the
3 months U dð Þ, where rush hour refers to 6–10
a.m. and 4–8 p.m. on weekdays. This variable will
help identify commuters.

R dð Þ= BR dð Þ
U dð Þ ð3Þ

Figure 3. Characteristics of each group of users: (a) features presented by density plots, scatter plots and box plots, and (b) features
presented by radar chart.
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These four values were calculated for each of the
11,446 Transit app bikeshare users. Then, we applied an
unsupervised machine learning algorithm, Hartigan–
Wong k-means clustering, to the dataset using the open
source software program R. It works as follows: given a
number of clusters k, assign the samples into random k

clusters and calculate the centroids by Euclidean dis-
tance; keep updating the centroids if the centroids change
when removing a sample from that cluster; if an update
occurs, return to the first cluster and repeat the previous
step until all the samples are involved and no additional
updates happen (28). The algorithm is commonly used
for clustering unlabeled data and has various applica-
tions in industry, such as customer relationship manage-
ment and advertisement (29). Finally, to eliminate the
potential sensitivity to the sequence of objects and obtain
stable clusters, the variables were standardized, and the
analysis was run 20 times. The number of clusters k was
determined by silhouette analysis (30), and finally, k was
estimated to be six.

Next, we created numerous visualizations of the clus-
ters to better understand their characteristics. These
visualizations are shown in Figure 3. Figure 3a has three
types of plots to show the statistical features of each clus-
ter: scatter plots along the left side; density plots along
the diagonal, and box plots on the right-hand side. The
clustering results were also visualized in a radar graph as
shown in Figure 3b, which was created using Python.
Last, the color coding for each cluster is the same for
Figure 3a and b; the legend is shown on the bottom right
side (in Figure 3b) and includes the cluster labels, which
are discussed in the following paragraph.

Based on the visualizations of the clusters shown in
Figure 3, we assigned labels to each cluster. First, we
assigned the four labels from the prior literature (com-
muters, utility users, leisure users, and tourists) and made
a few minor wording changes (‘‘tourists’’ to ‘‘visitors’’).
Next, we defined labels for the remaining two clusters
according to their features. We first identified frequent
and infrequent users using the variables ‘‘days of use’’
and ‘‘duration’’ of days. Then, we used ‘‘weekday usage
rate’’ and ‘‘rush hour usage rate’’ to classify these users.

The six clusters and their corresponding labels can be
summarized in the following way:

� Commuters (shown in cyan in Figure 3a and 3b):
Commuters used bikeshare on numerous days
during the study period (as shown by a high value
of the variable ‘‘duration’’). They mostly rode dur-
ing rush hour on weekdays (variable ‘‘rush hour
usage’’ was high). Overall, they were very heavy
users.

� Utility users (shown in yellow in Figure 3a and
3b): Utility users may be Chicago residents
because this group also had a relatively high value
for the variable ‘‘duration.’’ However, they did
not use bikesharing service as much as commu-
ters; their typical number of ‘‘days of use’’ was not
as high as commuters. These users generally
cycled on weekdays, potentially for errands or
shopping (as indicated by a high value of the vari-
able ‘‘weekday usage’’ but a low value for ‘‘rush
hour usage’’).

� Leisure users (shown in red in Figure 3a and 3b):
Leisure users likely live in Chicago, as indicated by
a relatively high value of the variable ‘‘duration.’’
However, they had a relatively low rate of use on
weekdays (‘‘weekday usage’’ is low). The cyclists in
this group likely used shared bicycles to go to the
gym, ride to the park, or make other recreational
trips.

� Infrequent commuters (shown in green in Figure 3a
and 3b): This group of users followed a similar
pattern to commuters (‘‘rush hour usage’’ is rela-
tively high), but they do not use shared bikes very
often (both ‘‘days of use’’ and ‘‘duration’’ are low).

� Weekday visitors (shown in blue in Figure 3a and
3b): These users mostly cycled on weekdays
(‘‘weekday usage’’ is comparatively high) but they
had a low duration value, suggesting that they
may not be from the Chicago area.

� Weekend visitors (shown in purple in Figure 3a
and 3b): This group of users follows a similar pat-
tern to visitors (‘‘duration’’ and ‘‘days of use’’ are

Table 2. Results of Classification of Transit App Users and their Bikesharing Unlocks

Category
Number of users

(% of users)
Number of unlocks

(% of unlocks)
Mean days

of use
Mean duration

of days
Mean weekday

usage rate
Mean rush hour

usage rate

Commuters 1,094 (10%) 57,232 (45.58%) 20.73 44.81 0.75 0.52
Utility users 1,729 (15%) 22,737 (18.1%) 7.51 56.20 0.73 0.44
Leisure users 2,271 (20%) 23,749 (18.9%) 5.19 15.47 0.64 0.39
Infrequent commuters 2,727 (24%) 10,267 (8.18%) 2.01 4.06 0.98 0.83
Weekday visitors 1,627 (14%) 5107 (4.06%) 1.54 2.23 0.97 0.07
Weekend visitors 1,998 (17%) 6478 (5.16%) 1.41 2.47 0.06 0.01
Total 11,446 (100%) 125,570 (100%) 5.09 17.56 0.69 0.40

Yang et al 7



low), but they cycled mostly on weekends (‘‘week-
day usage’’ is low).

The number of Transit app users and bikeshare
unlocks for each cluster is shown in Table 2. This table
reveals that commuters account for 10% of all Transit
app bikesharing users, but 45.58% of the trips are taken
by this group. This is consistent with a previous study of
Montreal, which concluded that regular members make
large numbers of bikeshare trips (31). The groups that
use bikesharing service infrequently (infrequent commu-
ters, weekday visitors, and weekend visitors) in Chicago
comprise 55% of Transit app bikesharing users. This is
likely because in 2016, only 24-h passes were sold directly
through the Transit app, whereas annual passes had to
be purchased via other means (25). Those who purchased
annual passes could then sign into their account via the
Transit app to unlock bikes, but this extra step may
explain why there were more infrequent users compared
with frequent users.

Part 3: Trip Chaining Algorithm to Identify Bike
Chaining Unlocks

As discussed in the previous analysis, the bikesharing
users were classified into different groups, and each
group likely corresponds to different primary trip pur-
poses. To further investigate the differences between the
user groups, we examined the potential impacts of the
bikeshare pricing policy on each user group.

The prior literature suggests that bikesharing users
may exhibit cost sensitivity; a previous study showed
that many annual members tended to return shared bikes
just before being charged an additional usage fee (21).
Furthermore, there is anecdotal evidence that some
cyclists may make longer trips by ‘‘bike chaining.’’ We
coined the term ‘‘bike chaining’’ to refer to the following
phenomenon: a bikeshare user returns a bicycle within
30 min and immediately checks out another bicycle to
continue a trip; this is likely done to avoid paying addi-
tional usage fees when a bicycle is rented for more than
30 min. Figure 4 provides an example to further explain
this concept. It shows bike unlocks of a Transit bike-
share user on a single day. His first unlock of the day, in
red, is classified as ‘‘unrelated unlock’’ because it is not
followed by another unlock within a 30-min period. His
second unlock, in blue, is classified as the first unlock of
a trip that involved ‘‘bike chaining.’’ His third and fourth
unlocks, in green and purple, seem to be ‘‘bike chaining’’
unlocks because they are within 30 min.

The previous literature and anecdotal evidence
inspired the following analysis of ‘‘bike chaining’’
unlocks between user groups, especially the differences
between annual members (who may be commuters) and
24-h pass holders. We designed a trip chaining algorithm
to detect this unlocking pattern. This was done for each
Transit app bikeshare user (by individual device ID) for
each day in the 3 months in 2016 to explore ‘‘bike chain-
ing’’ unlocks.

The algorithm worked as follows. First, for each bike-
share unlock, we checked if there was a subsequent
unlock on the same day, and if so, the time at which the
second unlock occurred was examined to see if it was
within 30 min of the first one. Then, the station where the
second unlock occurred was checked to make sure that
was at a different location from the first unlock. Then, we
considered the speed of the trip made by each Transit app
user and compared it with the average speed of all Divvy
users. Speed was evaluated as follows: we calculated the
Euclidean distance between the two potential bike chain-
ing unlocks (longitude/latitude) by the Haversine formula
(32). The formulas are shown in equations 4 and 5; the
minimum distance d between any two points on a spheri-
cal body can be calculated given the latitudes u1 and u2,
the change in longitude, Dl, and the earth’s radius R (33).

Figure 4. Individual user with bike chaining unlocks.
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Next, the speed s was calculated by dividing the dis-
tance d between two consecutive unlocks by the time
between unlocks, t2 � t1, as shown in Equation 6.

s=
d

t2 � t1

ð6Þ

Finally, the speed was compared with the average speed
of all Divvy trips, which was calculated by applying the

harversine formula (32) to system-wide trip data from the
bikesharing operator. If the estimated speed was within
one standard deviation of the average speed of all Divvy
users (from 3.25 to 7.84 mph), then this unlock was clas-
sified as a ‘‘bike chaining’’ unlock.

Figure 5 summarizes the algorithm to find ‘‘bike
chaining’’ unlocks in a flowchart, and this algorithm was
run as a script in the open source program R. This pro-
cess was repeated for all unlocks on each day in the 3
months in 2016 for each individual bikeshare user in the
Transit app dataset.

The results of the trip chaining algorithm are shown
in Table 3. As shown in the last row of the table, 5.7% of
all Transit app bikeshare unlocks were classified as ‘‘bike
chaining’’ unlocks, and 27.3% of the Transit app bike-
share users (by device ID) used this strategy at least once
during the 3-month study period to avoid paying addi-
tional fees.

The trip chaining algorithm was also applied to each
cluster from the previous section. The results are shown
numerically in Table 3, and the number of ‘‘trip chaining
bikers’’ by unique device ID is visualized for each cluster
in pie charts in Figure 6.

The first cluster, commuters, made the most ‘‘bike
chaining’’ unlocks. Approximately 66% of commuters
tried this strategy at least once in the 3-month study
period, presumably to avoid paying extra fees. This may
be because commuters are familiar with bikesharing and
local cycling routes, therefore, it is easy for commuters
to lock the bikes within 30 min and check out another
one (21).

Approximately 9.6% of unlocks made by weekend
visitors were ‘‘bike chaining’’ unlocks, which is the same
percentage as commuters. However, only 18.9% of week-
end visitors were classified as ‘‘trip chaining bikers’’
(based on unique device IDs). Similarly, weekday visitors
had 7.9% ‘‘trip chaining unlocks’’ but only 16.7% were
‘‘trip chaining bikers.’’ One reason that the percent of vis-
itors exhibiting this behavior is lower than the percent of
commuters may be that many visitors are not familiar
with the system. Another reason may be that many tour-
ism hotspots in Chicago such as museums are close to

Figure 5. Trip chaining algorithm identifying bike chaining
unlocks.

Table 3. Number of Bike Chaining Unlocks and Trip Chaining Bikers by Category

Category
Bike chaining unlocks (% of bike

chaining unlocks in each category)
Trip chaining bikers (% of trip

chaining bikers in each category)

Commuters 2,627 (9.6%) 723 (66.1%)
Utility users 1,176 (5.2%) 590 (34%)
Leisure users 1,588 (6.7%) 727 (32%)
Infrequent commuters 711 (6.9%) 439 (16.1%)
Weekday visitors 402 (7.9%) 272 (16.7%)
Weekend visitors 602 (9.6%) 378 (18.9%)
Total 7,106 (5.7%) 3,129 (27.3%)
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each other in the downtown area, so visitors may not
need to ride more than 30 min.

For utility users, only 5.2% of the trips were classified
as ‘‘bike chaining’’ unlocks, which is the smallest portion
when compared with the other groups. One explanation
could be that the utility users are the people who cycle
during weekdays for errands, such as shopping (11); the
destinations of these errands may be easy to find within a
short distance, such as convenience stores and pharma-
cies. In total, 34% of the utility users (by unique device
ID) made ‘‘bike chaining’’ unlocks in the 3 months, which
is reasonable because they are probably local residents
and may be more familiar with the bikesharing stations.
Similarly, leisure users are also likely residents, and 32%
of them made ‘‘bike chaining’’ unlocks.

The last user group, known as infrequent commuters,
also tried the ‘‘bike chaining’’ strategy; 6.9% of their
unlocks were classified as ‘‘bike chaining’’ unlocks.

These results suggest that annual members and 24-h
pass holders may respond differently to Divvy’s pricing
policy. Although the percentages of ‘‘bike chaining’’
unlocks are all between 5% and 10% in each of the
groups, the percentages of ‘‘trip chaining bikers’’ vary
substantially between different groups. Specifically, the
three groups on the left-hand side of Figure 6 (infrequent
commuters, weekday visitors, and weekend visitors)

follow the same pattern. These users may be more likely
to purchase a 24-h pass because of their low bikeshare
usage, and only 16–19% of them were identified as ‘‘trip
chaining bikers.’’ However, the three clusters shown on
the right-hand side of Figure 6 (commuters, utility users,
and leisure users) may be more cost sensitive to bikeshare
pricing policies. Over 30% of people in each of these clus-
ters tried ‘‘bike chaining’’ at least once during the study
period. It is likely that many bikeshare users in these
three groups are annual members of Divvy bikeshare.

Conclusions and Areas for Future Research

This study used a new dataset from a smartphone appli-
cation called ‘‘Transit’’ to analyze bikesharing user pat-
terns in a three-part analysis of Chicago. First, Transit
app bikeshare usage patterns were compared with
system-wide bikeshare utilization using publicly available
data. The results revealed that hourly usage on weekdays
generally follows classical peaked commuting patterns;
however, daily usage reached its highest level on the
weekend. This suggests that there may be large numbers
of both commuting and recreational bikeshare users.
The second part identified distinct user groups via cluster
analysis; the results showed six different clusters: (1)
commuters; (2) utility users; (3) leisure users; (4)

Figure 6. Percent of trip chaining bikers per cluster.
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infrequent commuters, (5) weekday visitors; and (6)
weekend visitors. The group unlocking the most shared
bikes (45.58% of all Transit app unlocks) was commu-
ters, who represented 10% of Transit app bikeshare
users. The third part proposed a trip chaining algorithm
to identify ‘‘trip chaining bikers.’’ This term was intro-
duced to refer to bikeshare users who returned a shared
bicycle and immediately checked out another bicycle,
presumably to avoid paying extra usage fees for trips
over 30 min. The results of the algorithm revealed that
27.3% of Transit app bikeshare users appear to have
made ‘‘bike chaining’’ unlocks to avoid paying additional
usage fees. However, this varied substantially between
user groups; notably, 66% of Transit app bikeshare users
identified as commuters made one or more ‘‘bike chain-
ing’’ unlocks.

The implications of this research are important for
bikeshare providers to understand the impact of their
pricing policies. In Chicago, the pricing policy has
recently changed and now allows for longer trips before
additional fees are charged. A key reason for this change
was to simplify the pricing policy from the users’ per-
spective. Anecdotal evidence suggests that many bike-
share users would get confused by the additional usage
fees for trips, and this may have discouraged potential
new users from trying the system. To lower barriers to
use and ease customer understanding, the pricing policy
was simplified in numerous ways, including extending
the 30-min time frame before usage fees were charged. In
the new pricing policy, annual members pay additional
usage fees for trips over 45 min and 24-h (explore) pass
holders have 180 min, which still encourages turn-over
of shared bicycles but gives users additional time to com-
plete longer trips.

There are many areas for improvement and future
research that have emerged from this analysis. First, the
cluster analysis only considered temporal variables;
future research could consider the spatial data associated
with the location of bikeshare unlocks. Second, the trip
chaining algorithm used the Haversine formula to
approximate ‘‘as the crow flies’’ distance of bikeshare
trips. Distance traveled via the roadway network would
likely be a more accurate measure, and this has been left
for future research. Third, the datasets used in this paper
are only 3 months in duration; future research should
consider longer time periods (e.g., 1 year), which could
help to more easily identify some user groups such as vis-
itors to Chicago. Fourth, it would be interesting to apply
the trip chaining algorithm to newer data as the pricing
policy was changed in 2018 to accommodate longer trips
before additional fees are charged. Finally, the Transit
app dataset only includes bikeshare unlocks (i.e., trip ori-
gins) and does not contain data about bikeshare locks
(e.g., trip destinations). Moreover, the Transit app data

represents a subset of all bikeshare users in Chicago.
Therefore, if Divvy data are made available with a
unique identifier for individual users, future research
could consider modifying and applying the clustering
and trip chaining analyses to the larger, system-wide
dataset that includes both bikeshare unlocks and locks.
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