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Background

Transitis an app used to collect and
map real-time public transit data.
People may use the app to determine
which train or bus route to take, to

plan a trip, or to search for the quickest
form of transportation among other
things. The data collected from the app "
has been organized into 13 different ow
tables: device, favorites, feed

download, installed app, location, =
nearby view, placemark, session
complete, sharing system actions,
sharing system purchase, trip, uber
request, and user feed session.
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Data Tables

e We only used a portion of the tables provided
e Danielle used the session complete, placemark, and favorite tables
o The favorite table had to be included after the placemark table was
found to be incomplete

e Jing used the Uber request data from Transit dataset , as well as the
following public datasets from the Internet : Uber raw data, Taxi data in
New York, New York Central Park weather data

e Alice used the bikesharing system actions in the Transit dataset together
with another data source from a bikeshare operator



Home and Work Inferences of
Transit Users

e Danielle Stacy —
The University of Alabama




Outline

Research Question
The Process
A Clustering Example

Extracting the Data
o Which tables were used?

Clustering and Labeling the
Data

o What clustering algorithm?

o What labeling process?
Evaluating the Accuracy

o Whatis “accurate™?
Results and Future Work

o How were the results?
o What else could be done?




Question

Can Transit users’ home and work locations be inferred from the data
collected from the users in the app?

Location data should naturally cluster around two specific locations: home and work. To distinguish
the home and work clusters, | will find where the user is more commonly during the weekend. Users
work during the week and are at home during the weekend, so during the weekend, their location
data should cluster around their home location. The goal is to check this assumption with the data
provided from the app and determine if this is a valid process to infer home and work locations.



The Process

A unique identifier has been assigned to
every user, so it is simple to keep track of a
specific user across multiple tables. To check
a user’s location on the weekend, | will use
the session complete table that provides a
timestamp and location coordinates of the
user when they opened the app. If there is
clustering at a specific location during the
weekend for a user, | would designated that
location as the home and the other cluster
should represent the work location.

To validate my chosen locations of the user’s
home and work, | will make use of the
placemark and favorite tables. From these
table, | can find users’ stored home and work
locations. | would check the coordinates from
this table with the coordinates my algorithm
found to establish an accuracy rate. The
accuracy rate is determined by how many
home and work locations were correctly
found within a certain margin of error.
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Extracting the Data

Extract those who have saved home and work locations
Remove duplicates
|solate those who have saved both home and work locations
Extract location information from those udids

Use of Python, Bash script, and OpenDIEL

Placemark and
favorite tables

Udids with
home and work

Session complete
table

Location data of
udids of interest

New file for each
udid




Clustering and Labeling the Data

With the location data extracted, | can

find clustering. | chose to use k-means . Ve

as my clustering algorithm. Once the rr . Ve .

data is clustered, | am free to label the P " .

clusters as home and work. To do this, NGEE) s | - . -:‘ o

| find the percentage of data that oy g By . ‘.

occurs on the weekend for each RELEE oo Ny . RS "

cluster. The centroid of the cluster Mondyulloiy 3 e

with the higher percentage of

weekend data is labeled home and oo

the other is work. . fork: (493110048, ipaossare)
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Evaluating the Accuracy

With the data clustered and labeled, it is time to establish an accuracy rate.
Validating the results will be easy since | have only used the data of users who
have saved their home and work locations. | have defined a point as
“accurate” when its coordinates are within 0.05 of the actual locations.

For example, if the actual coordinates are (38, -75) and my algorithm
determined the coordinates are (38.5, -74.5), then the result is deemed
accurate.

| also have evaluated the average of how far the algorithm-found coordinates
are from the actual coordinates.



Results and Future Work

With the weekend/weekday labeling system
and a margin of error or £0.05, | reached a
home accuracy rate of 65.5027% and a work
accuracy rate of 56.1108%. The margin of
error amounts to over 4 kilometers. The
average distance of the algorithm-found
coordinates from the actual home
coordinates is about 80 kilometers! The
average distance of the algorithm-found work
from the actual work location is also about 80
kilometers.

Home accuracy rate: 0.6550270921131849
Work accuracy rate: ©.5611077664057796

Average distance from home: 0.09856185921476948, -0.7193104142689638
Average distance from work: ©.1440318463053732, -0.7285809828786194

Need to improve the accuracy rate and the
margin of error. Ideally, the margin of error
should only be about 1 kilometer. This may
be done with a different clustering algorithm
or a different labeling system. Clustering
algorithms that are not susceptible to outliers
nor require a predetermined number of
clusters might be better than k-means. A
labeling system that takes into account the
patterns of the user's movements throughout
the day may be more accurate than simply
using the time data.
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UBER REQUEST ANALYSIS(2016-11~2017-10)




Contents

wiil Lycamobile & 9:17 AM @ 7 0 3} 88% )

r’E_*°*

User request time trend

o By weekday
o By hour

Uber types selected by
user

Analysis of the frequency (o U
of uber request

Uber request & weather

© Knoxville Station
Cumkziiand Ave EB / Volunteer Blvd

ol Lycamobile & 9:18 AM @ 7 0 % 87% mm)

Cancel Trip Planner Route

Current Location
4t

Walmart

Leave Now Options

® 30 min

. "

Leave in 28 min

@ 30 min

Leave in 28 min

@ 90 min

Leave in 28 min




weekday

Pickup Time Trend By Month

uber request by month

Friday 1290
Monday 1282
Saturday 1675
Sunday 1484
Thursday 1271
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More users in
November
than in other
months.



Pickup Time Trend By Hour

uber request by hour
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Uber types selectes by user

Uber typ selected by Transit user
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Analysis of the frequency of uber re

_request (more than 50 times)

In [121]:

device_id = request[ device_id ]
fre_id = device_id. value_cuunts(}

fre_id

Cut [121]:
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Although some users
use Transit to find or
book Uber over 50 times
in a year, it can be seen
from the figure that the
proportion of users who
have only used it once is
very large. This means
that most of the Uber
request senders will only
choose to use Transit to
book Uber once.



users amount

Uber Request & Weather

uber request via Transit & Precipitation of one day
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Uber & Taxi & Uber request via Transit
Analysis and Comparison




Dataset

Uber raw data

(fromTLC:http://www.nyc.gov/html/tlc/html/about/trip_record data.
shtml)

Taxi in New York d e Proportion analysis of
axl in New YOr ata i
(fromTLC:http://www.nyc.gov/html/tlc/html/about/trip_record_data. dlfferent methOdS

e e Trip time trend (heat map)
Uber request data from Transit o Trip & Weather

New York Central Park weather
data

(from:National Climatic Data Center https://www.ncdc.noaa.gov/)



http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://www.ncdc.noaa.gov/

Proportion analysis of different methods

This is a pie chart of the proportion of users who
choose to travel by different modes of
transportation within one month.

From this we can get: Users who use Transit to
book Uber are very few in comparison of all the
data.

It is also possible to verify previous assumptions:
the most primitive purpose of most users of
Transit is to query public transit real-time
information or use public transportation.

Yellow taxi users account for the largest
proportion. They are more widely distributed than
green taxis.

Yellow taxis are still a very important part of user
travel choices

THE PROPORTION OF USAGE IN
VARIOUS WAYS WITHIN ONE MONTH

Uber request
via Transit Uber

19%

Green taxi
8%

Yellow taxi
T3%
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User count

User count

Trip & Weather
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Future Work

e (Geographical location analysis:

o pickup location distribution
(density map).

o The distance of the user's
location from the subway
station or bus station.

Density of Uber Origins
Figure 3.  from the Transit App for 2015

Legend

[ centrai Business Distrct
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¢ Transfer Staticns

(AN ot B Dway Meard
emaes r ey

Subway routes
Density of Uber Origins
Value

High : 3.000
per sq. mlie

Scurce: The Transt Aog (307Q)

Davidson, Peters and
Brakewood (2017).
Interactive Travel Modes:
Uber, Transit and Mobility
in New York City.
Proceedings of the 96th
Annual Meeting of the
Transportation Research
Board, Washington, DC.
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Background: Rapid growth of bikeshare

Bike share is increasing. When solving management problems, a good
comprehension of usage pattern is useful.
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Background: Backshare pricing policy changed in 2018

TABLE 1 Pricing Structure for the Divvy Bikesharing System

2016 2018
Annual 24-Hour Annual Explore (24- Single
Membership Pass Membership Hour) Pass Ride
Fees $99 $9.9 $99 $15 $3
0-30 minutes 50
31-45 minutes $1.5 $2 $0 $0 + $3 for
45-60 minutes + %3 for each each
61-90 minutes $4.5 $6 additional 30 additional
91-150 minutes | + $6 for each | + $8 for each minutes 30 minutes
Each additional +56 +58 +$3




Introduction: Bikeshare usage patterns

1. Usage purposes: potential user groups in bikeshare [1]

e Commuters rent bicycles to travel between home and workplaces, or
between home and transit stations on weekdays. The cyclists usually use
it during the rush hour (6 - 10 a.m. and 16 - 20 p.m.)

e Utility users use bicycles throughout the weekdays for shopping and
errands.

e Leisure users generally ride at weekends for fun and exercise.

e Tourist users use bicycles to the beach, mountain or explore the city.

[1] O’Brien, O., Cheshire, J. and Batty, M., Mining Bicycle Sharing Data for Generating Insights into Sustainable Transport Systems. Journal of Transportation Geography, Vol. 34, 2014, pp. 262-273.
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Introduction: Bikeshare usage patterns ) (-

Bike chaining unlocks \ B s
2. Chaining trips: bike chaining unlocks
The “bike chaining” unlocks may occur when a %, / |
user appears to return a bicycle within 30 Bike chaining unlocks |
minutes and immediately checks out another 3 N,
bicycle to continue the trip; it is likely that the E o \
people may avoid paying additional usage fees in e “)1
this way because they will be charged when a : N
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Dataset: Bikeshare in Transit App

324 5 La Salle St

DIVYY

Choose any bike at station LaSalle
St/ Jackson Bivd and enter the
following code 1o uniock it

DIYY 27

22131

Eapires in 453 mn

£ LaSalle St/ Jackson Bivd

L *x

How Do | Undock a Bike?
F'm Ready to Ride!

Transit & Bikeshare Info Create hikeshare account Unlock code for bikeshare




Dataset: Unique Transit dataset | open Transit Aoy

e Transit App Data

- Device information
- User (phone) location when unlocking a bicycle
- Bikeshare station location (unlock only)

Create a record with
Unique device id

- Timestamp

e Divvy Data
- Start & end locations of trips by station

- Start & end time & duration of trips Diwy Record
- User type (i.e., annual subscriber or 24hr pass Trip records including the
Customer) age & gender destination and Origins




Dataset: Area and time analysis

Three months data (May 23 - Aug 21 2016) in Chicago
The use of Transit app represents approximately 8.6% of all bikesharing trips
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Analysis

e Analysis 1: Exploratory analysis of system trends

e Analysis 2: Cluster analysis to identify user groups

e Analysis 3: Trip chaining algorithm to identify “trip
chaining” unlocks




Analysis 1: Exploratory Analysis of System Trends

1. Weekday pattern: Commuting

2500 -
/ Peaks in rush hour (6-10 a.m. & 4-8 p.m.) Transit Divvy
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Analysis 1: Exploratory Analysis of System Trends

2. Weekend pattern: Tourism and leisure
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is of System Trends

Exploratory Analys

Analysis 1

3. Ridership corresponds to weather condition
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Analysis 2: Cluster Analysis to ldentify User Groups

-

We used K-means classification

and the classification variables é' "
are as follows: §‘
ﬁ ";@“"'f' :.;.' --
e Days of use §'igiim_::'i._r_zz.--="'
e Duration of days L
g —
e Weekday usage rate §’§ l‘
e Rush hour usage rate §§I’| i
E = 1=
L }
Days of use Duration of days \Nbeleduyusage rate Rush hour usage rate Cluster

Results of K-means cluster method

(usina R)




Analysis 2: Cluster Analysis to Identify User Groups

Mean Mean Mean Mean
days of | duration | weekday | rush hour
use of days usage usage rate
rate
20.73 44.81 0.75 0.52
7.51 56.20 0.73 0.44
5.19 15.47 0.64 0.39
2.01 4.06 0.98 0.83
1.54 2.23 0.97 0.07
1.41 2.47 0.06 0.01
5.09 17.56 0.69 0.40

Results of K-means cluster method

Weekday Usage Rate

Duration of Days

{44414 osnjosteq

Rush Hour Usage Rate

leisure users

utility users
infrequent commuters
commuters

infrequent utility users
tourists

Visualization of cluster results (using python)




Analysis 2: Cluster Analysis to ldentify User Groups

Duration of Days

Many days of use

Most in rush hour on weekdays
Heavy users

Potential Chicago residents

asn Jo sAe(]
© o o o

Tourists

Weekday Usage Rate

e Cycle on weekends
e Low duration value
e Few days of use

Rush Hour Usage Rate




Analysis 2: Cluster Analysis to ldentify User Groups

Duration of Days Leisure users

e Low rate of use on weekdays
Potential Chicago residents
May use bikeshare to go to the
gym or parks

asn jo sAe(]

Weekday Usage Rate

e Cycle on weekdays
e Potential Chicago residents
Besikitne Liags Rute e May cycle for errands or shopping




Analysis 2: Cluster Analysis to ldentify User Groups

Duration of Days Infrequent Commuters

e Same pattern as “commuters”
e Less days of use
e Shorter duration value

asn Jo sAR(]

Infrequent utility users

Weekday Usage Rate

e Same pattern as “utility users”

e Less days of use
Rush Hour Usage Rate e Shorter duration value




Analysis 2: Cluster Analysis to Identify User Groups

Category Number of users Number of unlocks
Commuters account for only 10%
(%0 of users) (%o of unlocks)
of the whole users but they
Commuters 1094 (10%) 57.232 (45.58%) complete of all the unlocks.
Utility users 1729 (15%) 22737 (18.1%)
Leisure users 2271 (20%) 23,749 (18.9%)
Infrequent 2727 (24%) 10,267 (8.18%) of the users purchased the
t
= 24-Hour pass.
Infrequent 1627 (14%) 5107 (4.06%)
utility users
Tourists 1998 (17%) 6478 (5.16%)
Tatal 11,446 (100%) 125.570 (100%)




Analysis 3: Trip Chaining Algorithm

Bike chaining unlocks
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Analysis 3: Trip Chaining Algorithm to Identify Trip Chaining Bikers
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Summary

e Analysis from the system-level:
o Weekdays: commuting patterns
o Weekends: recreational usage
e Analysis from individual level:
o 46% of Transit bikeshare unlocks are unlocked by commuters, but the
commuters represents only 10% of Transit bikeshare users
o 27.3% of Transit app bikeshare users made “bike chaining” unlocks
to avoid paying additional usage fees
o 66% of Transit app bikeshare commuters are identified as “trip
chaining bikers”



Conclusion

e Three analysis have been conducted to address different problems: Home

and work inferences of users; relationship between uber, taxi users;
bikeshare usage patterns.

e With the big data, we are able to illuminate social processes that were
previously undersampled or poorly understood.




