
Fast electron detectors are gaining ground in traditional high-

resolution microscopy studies. In particular, 4D ptychographic 

datasets collected over a range of real and reciprocal space 

coordinates are believed to contain a wealth of information 

about structure and properties of materials. However, currently 

available data analysis methods are either too general, only 

allowing for analysis of simplest objects, or too reductive, 

effectively recreating traditional detectors from these datasets 

before interpretation. This project aims to explore the ways that 

symmetry mode analysis, the tool used to a great effect in 

theoretical studies of materials, can be adapted to analyze 4D 

datasets of materials such as multifunctional complex oxides. 
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Results

Goals

Research Questions

Given Matlab code using the least square model unmixing

method and three sample base-model data files, we seek to 

improve upon the baseline program. Our primary two goals 

are to implement an improvement to the current unmixing

algorithm, and to improve speed and performance by 

converting the program to C code, using LAPACK, and 

then having it run on a GPU, using MAGMA.

In the case of our problem, it can be formulated as 

𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 = 𝑏
Where 𝛼, 𝛽, and 𝛾 are the coefficients we’re trying to find, 

each M is a matrix representing one of the baseline models, 

and b is the given image. Represented as a grayscale picture, 

each image looks                   with the complete

something like this ↓,              set of 16 here. 

Since our example data has 

known coefficients, yet the 

original program does not find 

particularly close numbers, our 

task is to seek ways to get 

greater accuracy in the 

calculated values.

Starting from a basic least squares algorithm and a basic 

linear model, we began implementing various methods to 
solve this unmixing problem.

Next steps include:

• Working with OpenACC to parallelize the code

• Debugging and further streamlining what currently 

works

• Getting the MPI least squares  and GPU simplified 

least squares plus gradient working

All of our programs are run on the Bridges system.

Both simplified least squares with gradient and the Split-

Bregman get greater accuracy than basic least squares, 

though they are quite similar to each other, with Split-

Bregman being slightly better.

The total difference in results from actual values is:

>> 11.6405 For basic least squares

>>   2.9635 For simplified least squares with gradient

>>   2.8782 For the Split-Bregman method

As for speed, both of the latter two methods have very similar 

speeds and are faster than the equivalent implementation for 

basic least squares.

In the attempt to better solve for the coefficients, we used three 

different methods, but the workflow for each was still quite similar:

Least Squares

For A = [𝑀1 𝑀2 𝑀3 ] , b is the final image data, and  x = 

𝛼
𝛽
𝛾

, the 

basic least squares is implemented by changing 𝐴𝑥 = 𝑏 into 

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏, as this allows for the overdetermined matrix to be 

solved easily using LAPACK functions, but since it can be greatly 

affected by outliers and there is something missing in the simple 

linear model, it is also the least accurate method.

Simplified Least Squares with gradient

4 representative biases:

𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 − 𝑏,

α,β,γ : the true weights

Gradients:

(of the 3 modes)

As seen in the figures, both bias and gradient are highly symmetric 

and have similar patterns, so the gradient might be the missing 

part. Thus, we design a new model by including the gradients, 

formulated as
𝑏 = 𝛼𝑀1 + 𝛽𝑀2 + 𝛾𝑀0 + 𝑎 ∗ 𝑔1𝑥 + 𝑏 ∗ 𝑔2𝑥 + 𝑐 ∗ 𝑔0𝑥 + 𝑑 ∗ 𝑔1𝑦 + 𝑒 ∗ 𝑔2𝑦 + 𝑓 ∗ 𝑔0𝑦

Split-Bregman Method

This method is used to solve the L1-regularized least squares 

problem: apart from solving the basic least square form, we also 

want to minimize the L1-norm of the gradient of the resulting 

weight matrices, so that the resulting weights are more piecewise 

constant, just as the true weights appear.

Matlab
Code

C code for 
CPU with 
LAPACK

C code for 
GPU with 
MAGMA

C 
Parallelizing

Basic Least 

Squares

Simplified LS with 

Gradient

Split-Bregman

(20 iterations)

Matlab ~ 33 seconds ~ 21 seconds ~21 seconds

CPU, using LAPACK ~ 7 seconds ~ 0.75 seconds ~ 0.76 seconds

GPU, using MAGMA ~ 50 seconds ~ 4 seconds In-progress

CPU, using LAPACK 

and MPI

In-progress ~ 3 seconds In-progress


