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1. Background 

A low-rank representation of a matrix provides a powerful tool for analyzing the data 

represented by the matrix. It has been successfully used to filter out noises and extract the 

underlying features of the data in many data analysis tools, including Latent Semantic 

Indexing (LSI), genetic clustering, subspace tracking, and image processing. In this project, I 

implement "randomized" algorithm to compute the low-rank representation in the 

LAPACK/MAGMA/UMA/CUBLAS software framework. Compared to the traditional 

algorithms, the randomized algorithm has been shown to be more efficient to compute the 

low-rank representation of the modern large data sets. This is especially true on the modern 

computer architecture including the hybrid CPU/GPU computers, where the data access has 

become significantly more expensive compared to the computation.  

 

2. Introduction 

Let’s say there is a matrix A whose size is M by N, then there exist orthogonal matrices U = 

[u1u2, ..., uM] ∈RM× RM and V = [v1v2, ..., vN] ∈ RN× RN such that UTAV =Σ=diag (σ1, ..., 

σν), where Σ is a diagonal matrix whose size is M by N; also, ν=min {M, N}and σ1 ≥σ2 

≥...≥σν ≥0. The σi is the i-th singular value of A, the column vectors ui, vi are the i-th left and 

the i-th right singular vectors of A, respectively. 【2】.This is the general SVD 

decomposition.  

 

In low rank SVD approximation, a rank parameter k is given, this k is much smaller than both 

m and n. the low- rank matrix approximation problem is to find a good approximation to A of 

rank k, in the sense that by projecting A onto its top k left or right singular vectors. 【2】 



 

In this project, I implemented randomized algorithm to compute the low-rank representation 

in the LAPACK, MAGMA, UMA and CUBLAS-XT software framework. 

 

3. Algorithm and Math Model 

3.1. Algorithm Explanation 

The following shows the simple Matlab code for randomized singular value decomposition 

approximation algorithm which is called Power iteration: 

function [u, s, v] = svd_rand (A, k, ell, max_iters) 

n = size(A,2); 

q = randn (n, k+l); 

[q, r] = qr (q,0); 

    for iter=1:(max_iters-1) 

        p = A*q; 

        q = A'*p; 

        [q, r] = qr(q,0); 

    end 

    p = A*q; 

    [p, b] = qr(p,0); 

end 

[x, s, y] = svd(b); 

u = p*x (:,1: k); 

s =s (1: k,1: k); 

v = q*y(:,1: k); 

 

This algorithm is not hard to understand, for the given M-by-N matrix A, we produce a 

random matrix Q whose size is N by (K+L); usually we choose L to be equal to K, the use of 

L is to make the results more accurate. To be clear, I here list the sizes of all matrixes 

occurred. Dimension of P: M by K+L; B is (K+L)-by-(K+L); X is KL-by-KL; YT is K+L-by-

K+L; SI is K+L-by-1, by the way, we only need first k values of SI; in this way, we get vector 



S, whose size is K-by-1; eventually, we will use Sk=diag(S); Also, the dimension of Uk is M-

by-K and the dimension of Vk is N-by-K.      

 

After the whole process, there are three matrix UK, SK and VK that we want. Here, the error is 

a 2-norm ||A-UKSKVK
T ||2, which is also equal to (k+1) th largest singular value of A. By the 

way, it is also a nice way to check whether the code is right or not. 

 

We denote ATA by A1, it is clear that A1 is symmetric, then A1 can be decomposed to be 

U∑UT, where U is orthogonal matrix. Then, AU=U∑, AUj=Ujσj. For any random matrix P, P 

can be denoted as ∑cj σjUj for some cj; as we can see, AP=∑cjσjAUj=∑cj σj
2Uj. 

 

Additionally, computational cost is a major concern of the project. Let’s figure in what cases 

the randomized algorithm can outperform the general singular value decomposition. 

 

If we use LAPACK to compute SVD, it needs a m*n*n floating point operations (flops); as 

for randomization algorithm, it needs {2*[2*m*(k+l) *n] *max_iterations} floating point 

operations. In order to make randomized algorithm performs a fewer flops than LAPACK, we 

have to decide iteration times based on M, N, K, L. 

 

By simple calculation, we need to let m*n*n>{2*[2*m*(k+l) *n] *max_iterations}; which 

means n>4*(k+l) *max_iterations. In most cases, the value of n is much larger than k so 

randomization algorithm should work. Since we usually take L to be equal to K; we can 

decide iteration times based on M, N, K. 

 

For example, if we choose M=3000; N=500; K=8; then LAPACK’s SVD decomposition 

needs 3000*500*500 flops; randomization algorithm needs {2*[2*3000*(8+8) *500] 

*max_iterations} flops; so, max_iterations should be less than or equal to 7.  

 



We can see if the N/K is larger, we can use more iteration times; if the N/K is smaller, we can 

only use less iteration times. It is not hard to see that the randomization is suitable for large 

database. 

 

3.2. Optimization of the algorithm 

3.2.1. Cholesky QR Decomposition 

From the efficiency (Glops/s：giga-flops per second: 109 flops per second) I have recorded 

for each step of the algorithm, I found out the QR decomposition using LAPACK or 

MAGMA is very slow. Therefore, I use Cholesky QR Decomposition instead.  

 

 It works assuming A's condition number is small (e.g., less than 10^8 in double precision). In 

many data analysis applications, the matrix has low-rank plus noises, and these noises seem to 

make Cholesky QR Decomposition stable.  

 

The following is the algorithm of Cholesky QR Decomposition:  

(1) G=ATA 

(2) G=RTR 

(3) q=AR-1 

The following figure shows the algorithm of Cholesky QR Decomposition: 

 

 

3.2.2. Use of symmetry of AT*A 

In computing something like R = AT*A, instead of calling DGEMM or ZGEMM to form the 

entire matrix, one may consider taking advantage of the symmetry and compute only the 

lower or upper part of the matrix. This can be performed using ZHERK (symmetric rank-k 



update), which takes less time compared to ZGEMM since it need only half work of 

ZGEMM. 

 

And in Cholesky factorization, then Cholesky subroutine may need access only the lower or 

upper part of the matrix.  

 

4. Project Scheme 

The following shows the outline of the project:  

(1) Use LAPACK/BLAS to implement the randomized algorithm on CPU  

(2) Use MAGMA to implement basic randomized algorithm on GPU  

(3) Implement out-of-memory randomized algorithm when the matrix does not fit on the 

GPU, there are mainly two methods: using single queue, manual pipelining and using UMA 

and CUBLAS-XT on GPU.  

(4) set up tester to compare performances 

 

4.1. Implementation of the randomized algorithm on CPU using LAPACK 

For the randomization on CPU, we use double complex version. There are totally four 

version: double complex version (LAPACK function starting with ‘z’), single complex 

version (LAPACK function starting with ‘c’), double real version (LAPACK function starting 

with ‘d’) and single real version (LAPACK function starting with ‘s’).   

 

4.2. Implementation of the randomized algorithm on GPU using MAGMA 

Let’s see the major time-consuming parts of the whole process which are P=A*Q and 

Q=AT*P. The dimension of A is M-by-N, the dimension of Q is N-by-(K+L) and the 

dimension of P is M-by-(K+L). As for the flops，they are all 2*N*M*K flops. Therefore, the 

time spent on P=A*Q and Q=AT*P should be very close.  

 

When allocating CPU memory that will be used to transfer data to the GPU, there are two 

types of memory to choose from: pinned and non-pinned memory. Pinned 



memory is memory allocated using the cudaMallocHost function, which prevents the 

memory from being swapped out and provides improved transfer speed. [5] 

 

To reduce the time spent on set and get matrix, I use CPU pinned memory instead of just 

using CPU memory. 

 

4.3. Implementation of the out-of-memory randomized algorithm on GPU  

Since GPU has much smaller memory size than the CPU, it is very normal that the matrix 

does not fit on the GPU. That is when we should extend GPU-implementation. 

 

For each GPU device, it has about11439.9 MiB memory, which is equal to 1.19963e+10 

bytes, and I use double precision. Sqrt(12e9/8) =3.8730e+04. After some simple calculation, 

we can see that the device can only fit at most forty thousand by forty thousand matrix. 

Therefore, it is very common that many matrixes can not fit in the GPU. Here is where we 

need out-of-memory algorithm implementation.  

 

4.3.1. Manual pipelining 

When matrix A does not fit in the memory, we implement the out-of-memory algorithm. And 

we mainly need to care about two places of the code, where the matrix A is involved.  

 

One possible solution is to handle the “out of core” data movement directly but allocating say 

a dAtmp on GPU and explicitly transfer each part of A into dAtmp and perform dAtmp * dQ 

or transpose (dAtmp) * dQ. 

 

Firstly, when we can P=A*Q;  

we divide A and Q into several parts. Let’s call them A1, A2, A3, Q1, Q2, Q3, then P equals to 

A1*Q1+A2*Q2+A3*Q3. 

The algorithm is as follows:  

P=0; 

for  i=1,2,3…. 



         set (Ai to dA); 

          P=P+AiQi; 

end 

 

We can also see the process through the figure:  

 

 

Similarly, we can get the result of Q=AT*P. 

Algorithm:  

for  i=1,2,3…. 

         set (Ai to dA); 

          Qi=Ai
T*P; 

end 

           

As for how many i we need, in another word, how many parts A and Q are needed to divide, 

it depends on the size of the A. 



 

 

Here, we denote the number of rows of Ai to be NB. The size of NB is a major key of the 

efficiency of the algorithm.  

 

The setting of "NB" is for performance and there is some flexibility. And this value of NB 

can be determined by calling cudaMemGetInfo () after all the matrixes on GPU like dU, 

dV, ...., device arrays have been allocated.  One may then assume say 80% of remaining 

device memory is available for dA.  Then we can solve for NB using the following formula:  

NB = (0.8 * (freeMem/sizeof (magmaDoubleComplex)))/ (N * num_queues); 

NB = MAX (1, MIN (MIN (N, KL), NB)); 

 

This method takes advantage of available GPU device memory. 

 

When we use single queue to implement the out-of-memory case, I need to copy matrix from 

CPU to GPU; and for each parts of A, before doing GEMM I have to do the copy action, 

which is called set-matrix. Also, GEMM is a function for matrix multiplication. So, it will 

take a lot more time comparing to CPU and for cases that matrix fits. We can see the process 

as follows: 



 

 

A more sophisticated version may allocate dAtmp [0], dAtmp [1] and try to overlap data 

movement while performing computations. In another word, I Use more than one queue, so 

that I can do the set action and GEMM at the same time; then it will save a lot of time.  

 

4.3.2. using UMA and CUBLAS-XT  

UMA is a programming model, Unified Memory Access. Unified Memory creates a pool of 

managed memory that is shared between the CPU and GPU. Managed memory is accessible 

to both the CPU and GPU using a single pointer. The key is that the system 

automatically migrates data allocated in Unified Memory between host and device. [1] 

 

 



 

The following figure shows the performance of GEMM (matrix-matrix multiplication) 

between DGEMM, DGEMM with set and pinned, DGEMM with set, DGEMM with UMA. 

From this, we can see when the memory fits on GPU, the performance of MAGMA is much 

better, but when the memory does not fit, we need UMA. 

 

The NVIDIA CUBLAS library is a fast GPU-accelerated implementation of the standard 

basic linear algebra subroutines (BLAS). 

 

The CUBLAS-XT can accept arrays on CPU and break up the matrix on CPU into blocks and 

perform data transfer and computations on GPU.  When I use CUBLAS-XT, the 

data/matrices that I compute are on the CPU memory, so you don’t have to copy them to the 

GPU. The data arrays on CPU can be larger than available GPU device memory. CUBLAS-

XT takes data pointer to CPU memory. The CUBLAS-XT library will allocate device storage, 

perform data transfers, perform computations and transfer data back. This enables all the 

functions like GEMM to work on matrices larger than amount of GPU device memory. 

It can also take advantage of multiple GPUs on the same node. The library is copying things 

as necessary and uses as many GPUs are specified to accelerate the computation.  



 It is a convenient interface to get something to work, but it may be doing more than 

minimal data transfer.  If the arrays are sufficiently large that it is dominated by computation 

and not data movement, then this ability to use multiple GPUs may be very useful. 

 

Optimization of CUBLAS-XT: In the configuration for simple CUBLASXT, there is a call 

cublasXTSetBlockDim to set the block dimension.  One would like this BlockDim to be 

sufficiently large so that time for computation is least comparable to time for data movement. 

However, a very large BlockDim may use too much GPU device memory or limit amount of 

parallel computation.  So, I set BlockDim to be 256 which is relatively big for better 

performance. 

 

5. Performance Results 

I set up a tester called ‘testing_zgesvd_rand.cpp’ to compute time and error. In this tester, I 

used four functions I created in the source file called ‘zgesvd_rand.cpp’, 

‘zgesvd_rand_cpu.cpp’, ‘zgesvd_rand_m.cpp’ and ‘zgesvd_rand_uma.cpp’. For each test, we 

can compare the time and error of LAPACK/CPU/GPU/NGR/UMA/CUBLAS. 

First set of comparisons is between LAPACK SVD, CPU and in-core GPU. 

In the GPU case, I timed 8 different steps of SVD algorithm and they are QR(Q) for [Q,R] = 

QR(Q,0); GEMM(Q) for Q = AT*P; GEMM(P) for P = A*Q; QR(P) for [P,B] = QR (P,0); 

SVD for [X,S,Y] = SVD(B); GEMM(X) for U = P*X(:,1:k); GEMM(Y) for V = Q*Y(:,1:k); 

GET-SET for all the set-matrix and get-matrix performances. The following are 4 sets of 

comparisons. 

Comparison 1: M=2000, k=10, max_iteration=10; change N 
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Comparison 2: N=2000, k=10, max_iteration=10; change M 
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Comparison 3: M=10000, N=2000, max_iteration=10; change k 
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Comparison 4: M=10000, N=2000 k=10; change max_iteration 
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6. Motivation and Application of Randomized Approximation 

Singular Value Decomposition has a lot of applications in large-scale data analysis. A general 

family of applications for this algorithm is Principal Component Analysis applications, where 

a database (of documents, images etc.) that exists in a high dimensional space is projected to a 

lower dimensional space using SVD. It has been successfully used to filter out noises and 

extract the underlying features of the data in many data analysis tools. While the most 

obvious benefit of randomization is that it can lead to faster algorithms. [2] 

 

For example, we can use the randomized SVD onto Latent Semantic Indexing(LSI), genetic 

clustering, subspace tracking and image processing.  

 

In astronomy, for example, very small angular regions of the sky imaged at a range of 

electromagnetic frequency bands can be represented as a matrix—in that case, an object is a 

region and the features are the elements of the frequency bands.  
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Similarly, in genetics, DNA Single Nucleotide Polymorphism or DNA microarray expression 

data can be represented in such a framework, with Aij representing the expression level of the 

i-th gene or SNP in the j-th experimental condition or individual. [2] 

 

What’s more, Latent semantic indexing. Latent semantic indexing(LSI) is an indexing and 

retrieval method that uses a mathematical technique called singular value 

decomposition (SVD) to identify patterns in the relationships between the terms and concepts 

contained in an unstructured collection of text. A matrix containing word counts per 

paragraph (rows represent unique words and columns represent each paragraph) is 

constructed from a large piece of text and a mathematical technique called (SVD) is used to 

reduce the number of rows while preserving the similarity structure among columns. [4] 

 

7. Conclusion 

In this project, I mainly have done the following things:  

(1) Use LAPACK/BLAS to implement the randomized algorithm on CPU  

(2) Use MAGMA to implement basic randomized algorithm on GPU  

(3) Implement out-of-memory randomized algorithm when the matrix does not fit on the 

GPU, there are mainly two methods: using single queue, manual pipelining and using UMA 

and CUBLAS-XT on GPU.  

(4) set up tester to compare performances, then optimize the algorithm. 

 

8. Future Work 

If the node has multiple GPU and power iteration multiplication by A is very expensive, then 

one might consider using multiple GPU. Ideally this can be done simply by using CUBLAS-

XT. 

 

When the matrix is too big, we should try to get familiar with different randomized sampling 

and updating methods for the out-of-core Matrix. 

 



Also, there are many applications for us to explore like Latent Semantic Indexing (LSI), 

genetic clustering, subspace tracking, and image processing.  
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