Randomization Algorithm to Compute Low-Rank Approximation

Ru HAN
The Chinese University of Hong Kong
hanru0905@gmail.com
August 4, 2017

1. Background

A low-rank representation of a matrix provides a powerful tool for analyzing the data
represented by the matrix. It has been successfully used to filter out noises and extract the
underlying features of the data in many data analysis tools, including Latent Semantic
Indexing (LSI), genetic clustering, subspace tracking, and image processing. In this project, |
implement "randomized" algorithm to compute the low-rank representation in the
LAPACK/MAGMA/UMA/CUBLAS software framework. Compared to the traditional
algorithms, the randomized algorithm has been shown to be more efficient to compute the
low-rank representation of the modern large data sets. This is especially true on the modern
computer architecture including the hybrid CPU/GPU computers, where the data access has

become significantly more expensive compared to the computation.

2. Introduction

Let’s say there is a matrix A whose size is M by N, then there exist orthogonal matrices U =
[UiUg, ..., um] ERmX Rwand V = [viVy, ..., vn] € Rnx Ry such that UTAV =2=diag (o1, ...,
oy), where X is a diagonal matrix whose size is M by N; also, v=min {M, N}and ¢1 >c2
>...>ov >0. The o; is the i-th singular value of A, the column vectors u;, vi are the i-th left and
the i-th right singular vectors of A, respectively. [2] .This is the general SVD

decomposition.

In low rank SVD approximation, a rank parameter Kk is given, this k is much smaller than both
m and n. the low- rank matrix approximation problem is to find a good approximation to A of

rank k, in the sense that by projecting A onto its top k left or right singular vectors. [2]

In this project, | implemented randomized algorithm to compute the low-rank representation

in the LAPACK, MAGMA, UMA and CUBLAS-XT software framework.

3. Algorithm and Math Model
3.1. Algorithm Explanation
The following shows the simple Matlab code for randomized singular value decomposition
approximation algorithm which is called Power iteration:
function [u, s, v] = svd_rand (A, k, ell, max_iters)
n =size(A,2);
g = randn (n, k+I);
[g. r] = ar (q,0);
for iter=1:(max_iters-1)
p = A*q;
q=A"p;
[9. r1=ar(q,0);
end
p =A*q;
[p. b] = ar(p.0);
end

[x, s, y] = svd(b);

u=p*x(:,1: k);
s =s (1: k,1: k);
v =qg*y(:,1: k);

This algorithm is not hard to understand, for the given M-by-N matrix A, we produce a
random matrix Q whose size is N by (K+L); usually we choose L to be equal to K, the use of
L is to make the results more accurate. To be clear, | here list the sizes of all matrixes
occurred. Dimension of P: M by K+L; B is (K+L)-by-(K+L); X is KL-by-KL; YT is K+L-by-

K+L; Sl is K+L-by-1, by the way, we only need first k values of Sl; in this way, we get vector

S, whose size is K-by-1; eventually, we will use Sx=diag(S); Also, the dimension of Uy is M-

by-K and the dimension of Vi is N-by-K.

After the whole process, there are three matrix Uk, Sk and Vk that we want. Here, the error is
a 2-norm ||A-UkSkV«" ||z, which is also equal to (k+1) « largest singular value of A. By the

way, it is also a nice way to check whether the code is right or not.

We denote ATA by A, it is clear that A; is symmetric, then A; can be decomposed to be
U UT, where U is orthogonal matrix. Then, AU=UY’, AUj=Ujo;. For any random matrix P, P

can be denoted as Y cjcjUj for some cj; as we can see, AP=Y cjciAU=Y ¢j 6°U;

Additionally, computational cost is a major concern of the project. Let’s figure in what cases

the randomized algorithm can outperform the general singular value decomposition.

If we use LAPACK to compute SVD, it needs a m*n*n floating point operations (flops); as
for randomization algorithm, it needs {2*[2*m™*(k+I) *n] *max_iterations} floating point
operations. In order to make randomized algorithm performs a fewer flops than LAPACK, we

have to decide iteration times based on M, N, K, L.

By simple calculation, we need to let m*n*n>{2*[2*m*(k+I) *n] *max_iterations}; which
means n>4*(k+l) *max_iterations. In most cases, the value of n is much larger than k so
randomization algorithm should work. Since we usually take L to be equal to K; we can

decide iteration times based on M, N, K.

For example, if we choose M=3000; N=500; K=8; then LAPACK’s SVD decomposition
needs 3000*500*500 flops; randomization algorithm needs {2*[2*3000*(8+8) *500]

*max_iterations} flops; so, max_iterations should be less than or equal to 7.

We can see if the N/K is larger, we can use more iteration times; if the N/K is smaller, we can
only use less iteration times. It is not hard to see that the randomization is suitable for large

database.

3.2. Optimization of the algorithm

3.2.1. Cholesky QR Decomposition

From the efficiency (Glops/s : giga-flops per second: 10° flops per second) | have recorded
for each step of the algorithm, I found out the QR decomposition using LAPACK or

MAGMA is very slow. Therefore, | use Cholesky QR Decomposition instead.

It works assuming A's condition number is small (e.g., less than 1078 in double precision). In
many data analysis applications, the matrix has low-rank plus noises, and these noises seem to

make Cholesky QR Decomposition stable.

The following is the algorithm of Cholesky QR Decomposition:
(1) G=ATA
(2) G=RTR
(3) g=4R-1

The following figure shows the algorithm of Cholesky QR Decomposition:

~100 10,000 i
~100 [:= | DNN=H | ! | = D |
G c o R' R G Q R” c
Step 1: Block dot-products Step 2: Cholesky Step 3: Triangular solve

3.2.2. Use of symmetry of AT*A
In computing something like R = AT™A, instead of calling DGEMM or ZGEMM to form the
entire matrix, one may consider taking advantage of the symmetry and compute only the

lower or upper part of the matrix. This can be performed using ZHERK (symmetric rank-k

update), which takes less time compared to ZGEMM since it need only half work of

ZGEMM.

And in Cholesky factorization, then Cholesky subroutine may need access only the lower or

upper part of the matrix.

4. Project Scheme

The following shows the outline of the project:

(1) Use LAPACK/BLAS to implement the randomized algorithm on CPU

(2) Use MAGMA to implement basic randomized algorithm on GPU

(3) Implement out-of-memory randomized algorithm when the matrix does not fit on the
GPU, there are mainly two methods: using single queue, manual pipelining and using UMA
and CUBLAS-XT on GPU.

(4) set up tester to compare performances

4.1. Implementation of the randomized algorithm on CPU using LAPACK

For the randomization on CPU, we use double complex version. There are totally four
version: double complex version (LAPACK function starting with ‘z’), single complex
version (LAPACK function starting with ‘c”), double real version (LAPACK function starting

with ‘d”) and single real version (LAPACK function starting with ‘s’).

4.2. Implementation of the randomized algorithm on GPU using MAGMA

Let’s see the major time-consuming parts of the whole process which are P=A*Q and
Q=AT*P. The dimension of A is M-by-N, the dimension of Q is N-by-(K+L) and the
dimension of P is M-by-(K+L). As for the flops, they are all 2*N*M*K flops. Therefore, the

time spent on P=A*Q and Q=A™P should be very close.

When allocating CPU memory that will be used to transfer data to the GPU, there are two

types of memory to choose from: pinned and non-pinned memory. Pinned

memory is memory allocated using the cudaMallocHost function, which prevents the

memory from being swapped out and provides improved transfer speed. [5]

To reduce the time spent on set and get matrix, | use CPU pinned memory instead of just

using CPU memory.

4.3. Implementation of the out-of-memory randomized algorithm on GPU
Since GPU has much smaller memory size than the CPU, it is very normal that the matrix

does not fit on the GPU. That is when we should extend GPU-implementation.

For each GPU device, it has about11439.9 MiB memory, which is equal to 1.19963e+10
bytes, and I use double precision. Sqrt(12e9/8) =3.8730e+04. After some simple calculation,
we can see that the device can only fit at most forty thousand by forty thousand matrix.
Therefore, it is very common that many matrixes can not fit in the GPU. Here is where we

need out-of-memory algorithm implementation.

4.3.1. Manual pipelining
When matrix A does not fit in the memory, we implement the out-of-memory algorithm. And

we mainly need to care about two places of the code, where the matrix A is involved.

One possible solution is to handle the “out of core” data movement directly but allocating say
a dAtmp on GPU and explicitly transfer each part of A into dAtmp and perform dAtmp * dQ

or transpose (dAtmp) * dQ.

Firstly, when we can P=A*Q;

we divide A and Q into several parts. Let’s call them A1, Az, As, Q1, Q2, Qs, then P equals to
Ar*Q1+A*Qr+As*Qs.

The algorithm is as follows:

P=0;

for i=1,2,3....

set (Ai to dA);
P=P+AiQ;;

end

We can also see the process through the figure:

P=A*Q

Similarly, we can get the result of Q=AT*P.
Algorithm:
for i=1,23....
set (Aito dA);
Qi=A™P;

end

As for how many i we need, in another word, how many parts A and Q are needed to divide,

it depends on the size of the A.

Q=A™P

Here, we denote the number of rows of A; to be NB. The size of NB is a major key of the

efficiency of the algorithm.

The setting of "NB" is for performance and there is some flexibility. And this value of NB
can be determined by calling cudaMemGetinfo () after all the matrixes on GPU like dU,
dV,, device arrays have been allocated. One may then assume say 80% of remaining
device memory is available for dA. Then we can solve for NB using the following formula:
NB = (0.8 * (freeMem/sizeof (magmaDoubleComplex)))/ (N * num_queues);
NB = MAX (1, MIN (MIN (N, KL), NB));

This method takes advantage of available GPU device memory.

When we use single queue to implement the out-of-memory case, | need to copy matrix from
CPU to GPU; and for each parts of A, before doing GEMM I have to do the copy action,
which is called set-matrix. Also, GEMM is a function for matrix multiplication. So, it will
take a lot more time comparing to CPU and for cases that matrix fits. We can see the process

as follows:

Time Line

A more sophisticated version may allocate dAtmp [0], dAtmp [1] and try to overlap data
movement while performing computations. In another word, | Use more than one queue, so

that | can do the set action and GEMM at the same time; then it will save a lot of time.

gqueuel

queue

Time Line

4.3.2. using UMA and CUBLAS-XT

UMA is a programming model, Unified Memory Access. Unified Memory creates a pool of
managed memory that is shared between the CPU and GPU. Managed memory is accessible
to both the CPU and GPU using a single pointer. The key is that the system

automatically migrates data allocated in Unified Memory between host and device. [1]

Unified Memory

Dramatically Lower Developer Effort

Developer View Today Developer View With
Unified Memory

Unified Memory

The following figure shows the performance of GEMM (matrix-matrix multiplication)
between DGEMM, DGEMM with set and pinned, DGEMM with set, DGEMM with UMA.
From this, we can see when the memory fits on GPU, the performance of MAGMA is much

better, but when the memory does not fit, we need UMA.

5000
45008 - - Qy@f@\@f——@ -6-0-6--5-0-0
/
a000f /o
/
BE00f Do BT
3000F o R
0
S2500F AN e
S
2000p
1500
1o00fp /S
DGEMM+Set,pinned
500f of | = DGEMM:sSet
—— DGEMM+UMA
0
0 0.5 1 1.5 2 2.5 3 3.5 4

Matrix dimension (m=n=Kk) x10*

The NVIDIA CUBLAS library is a fast GPU-accelerated implementation of the standard

basic linear algebra subroutines (BLAS).

The CUBLAS-XT can accept arrays on CPU and break up the matrix on CPU into blocks and
perform data transfer and computations on GPU. When | use CUBLAS-XT, the
data/matrices that I compute are on the CPU memory, so you don’t have to copy them to the
GPU. The data arrays on CPU can be larger than available GPU device memory. CUBLAS-
XT takes data pointer to CPU memory. The CUBLAS-XT library will allocate device storage,
perform data transfers, perform computations and transfer data back. This enables all the
functions like GEMM to work on matrices larger than amount of GPU device memory.

It can also take advantage of multiple GPUs on the same node. The library is copying things

as necessary and uses as many GPUs are specified to accelerate the computation.

It is a convenient interface to get something to work, but it may be doing more than
minimal data transfer. If the arrays are sufficiently large that it is dominated by computation

and not data movement, then this ability to use multiple GPUs may be very useful.

Optimization of CUBLAS-XT: In the configuration for simple CUBLASXT, there is a call
cublasXTSetBlockDim to set the block dimension. One would like this BlockDim to be
sufficiently large so that time for computation is least comparable to time for data movement.
However, a very large BlockDim may use too much GPU device memory or limit amount of
parallel computation. So, I set BlockDim to be 256 which is relatively big for better

performance.

5. Performance Results

| set up a tester called ‘testing_zgesvd rand.cpp’ to compute time and error. In this tester, |
used four functions I created in the source file called ‘zgesvd rand.cpp’,
‘zgesvd_rand_cpu.cpp’, ‘zgesvd rand _m.cpp’ and ‘zgesvd rand_uma.cpp’. For each test, we
can compare the time and error of LAPACK/CPU/GPU/NGR/UMA/CUBLAS.

First set of comparisons is between LAPACK SVD, CPU and in-core GPU.

In the GPU case, | timed 8 different steps of SVD algorithm and they are QR(Q) for [Q,R] =
QR(Q,0); GEMM(Q) for Q = A™P; GEMM(P) for P = A*Q; QR(P) for [P,B] = QR (P,0);
SVD for [X,S,Y] = SVD(B); GEMM(X) for U = P*X(:,1:k); GEMM(Y) for V = Q*Y(;,1:k);
GET-SET for all the set-matrix and get-matrix performances. The following are 4 sets of
comparisons.

Comparison 1: M=2000, k=10, max_iteration=10; change N

Gy QRN Ciemm(() CremmiP) QR(P) SVD GEMMiX) | GEMM(Y) GET-SET other
0018300 0000316 0.003510 0002270 0000132 0.000038 0.000025 0001410 0.004000
0.020200 0000565 0.007440 0002290 0000147 0.000038 0.000025 0002500 0.006800
0022500 000705 0009240 0002310 000046 000038 JUALHL 0003580 0011400
0024500 0000928 0012300 0002250 D005 000038 JUALHL 0.004690 0.014800
0.025600 1001100 0014600 0002220 00004 000039 0000030 0005730 0017500
0032410 001290 0017200 0002220 00004 000039 (.000034 0006820 0.019900
0035900 1001470 0.020000 0002230 000046 000038 (.000037 0007860 002230
0.039500 1001680 0022400 0002240 000043 000038 (.000037 0005930 0.024800
0.042900 0,001 840 0025300 0002260 D052 000037 0.000039 0010000 0017400

(0.047000 (1.002060 0027800 0002340 0000077 0.000038 0.000041 00100 0.019%0

M=2000 k=10 max_iteration=10
0.120000
0.100000
0.080000
0.060000
0.040000

- u B
-
o f W I
0.000000

N=500 N=1000 N=1500 N=2000 N=2500 N=3000 N=3500 N=4000 N=4500 N=5000

B QR(Q) B Gemm(Q) = Gemm(P) QR(P) m SVD
m GEMM(X) = GEMM(Y) :m GET-SET mother

LAPACK CFPU Py
=300 .24 .03 0.03(MH1]
IN=10000 1.23 .06 0. 04HHIS
=130 314 0.0 0045047
IN=20000 33 014 0059987
IN=2500 521 01 00659968
IN=30000 10.42 .24 0080052
IN=3500) 504 0.2 0089981
IN=d000 593 .33 0. 1070
IN=4500 942 .38 005948
IN=3000 984 .42 0. 109956

M=2000 k=10 max_iteration=10

1.20E+01
1.00E+01

8.00E+00

S)

@
£ 6.00E+00
=

4.00E+00

2.00E+00

0.00E+00 e ————
Q Q Q Q Q Q Q Q Q Q
S S S S S S
N R S R

mmm QR(Q) mmm Gemm(Q) mmmm Gemm(P) QR(P)

s S\/D s GEMM(X) = GEMM(Y) : mmmm GET-SET

. Other e | APACK — CPU

Comparison 2: N=2000, k=10, max_iteration=10; change M

N=2000 k=10 max_

wemm(P)

0.0279
010542
0.0807
0.103
0128
0.143
0171
0.19%
0.218
.24

OR(F)

sVD GEMM(X) GEMM(Y) :
0.00436. 1.24e-04 (1000031 (0000279
000825 0.000149 0000127 (10000331
000114 0000123 000013 (0000329
00149 0.000134 0000133 (10000391
00186 0000125 0000079 0.000031
00221 0.000149 0000183 0.000031
00234 0000166 0.000206 (100003
00303 0000160 0000220 (100003
00339 0000174 0.00023 (100003
00367 000016 0000247 (100003

iteration=10

GET-SET

1011
00216
00319
0.0423
0.0329
0.0631
00737
0.0844
0.0946

01103

0.019%
1047
(1064
0078
01103
1114
01133
01158
{1183
0193

M=5000 M=10000M=15000M=20000M=25000M=30000M=35000M=40000M=45000M=50000

B Gemm(Q) m Gemm(P)
® GEMM(Y) :m GET-SET

GpPU QRO Genmm(Q)) (
M=3000 00243 000206
M=10000 0.025 000402
M=13000 00231 000608
M=20000 00246 000723
M=25000 00247 000917
M=30000 00262 0.0101
M=33000 00248 0.012
M=40000 00236 00137
M=43000 00243 00153
M=30000 00232 00174
0.7

0.6

0.5

04

0.3

0.2 .

01 |

[
,m -
= QR(Q)
B GEMM(X)
LAPACK

M=3000 10.26
M= 10000 14.71
M=135000 17.43
M=20000 2178
M=25000 2545
M=30000 2947
M=35000 3282
M= 0000 3615
M=4 5000 3905
M=30000 444

CFU

.41
.83
1.24
1.66

2.1
252
313

3.2
362
4.08

QR(P

mother

GFPU

) = SVD

ALY
0. 1603791
02194859
02703781
.339705
L.3B0E63
440302
510412
0.369954
0619737

N=2000 k=10 max_iteration=10

Time(s)

mmm QR(Q) e Gemm(Q) mmmm Gemm(P)
QR(P) s SVD m— GEMM(X)

mmmm GEMM(Y) = GET-SET = other

e | APACK e CPU

Comparison 3: M=10000, N=2000, max_iteration=10; change k

ORIQ) (emmi(}) (emmiF) (R(P) SVD GEMM(X) | GEMMIY]
k=1 00179 0.00128 0.016% 00042 00000372 000042 00000155
k=4 00197 000131 0.016% 000313 0000073 (0000046 0.000021%
k=0 00221 0.00348 0034 000573 0000067 (0000047 0.000021%
k=8 00231 0.0039% 0034 000899 0.000093 0000112 0000031
k=10 00231 0.00401 0.0341 000792 000012 DOROIE3 0.000032%
k=12 00278 0.00401 00342 000942 0000163 0000109 0.000047
k=14 00299 0.00402 00543 00108 0000214 0000121 00000301
k=16 0.034 0.00403 00544 00128 0000275 000012 0.{H0MH495
k=18 00334 0.00368 0.103 00127 0000465 0000123 (0000332

k=20 0373 0.0036 00788 00144 0000382 000011%

(100498

GET-SET

10212
0.0213
0.0214
0.0213
0.0213
0.0213
0.0213
0.0217
10216
10216

00184
0.0133
0.043
0.04
0.047
0.043
0.03%
0.043
0.043
0.043

k

k=
k=
k=
k=
k=

k

0.25

0.2

0.15

0.1

0.05

=

Y]
12
14
16
18
=20

Time(s)

20

15

10

M=10000, N=2000 max_iteration=10

X
I
N

k

= QR(Q)
® GEMM(X)

U
N

= Gemm(Q) = Gemm(P)

m GEMM(Y) :m GET-SET mother

LAFPACK

M=10000, N=2000 max_iteration=10

14.55
14.55
14.5%
13.80
13.80
14.1%
14.14
14.21
14.73
13.91

CFU GPuU
.33
.61
.64
.78
L83
.92

1.11
119
1L.27

k=6 k=8 k=10 k=12

QR(P) = S\D

007997
(LOTHE0G
01498459

0. 149506
15399159

0. 160249
1599051
1703748
22212
1997508

k=2 k=4 k=6
m— QR(Q)
QR(P)
m— GEMM(Y)
—— LAPACK

k=8

mmm Gemm(Q)
mmm SV/D

.mmmm GET-SET = other

k=10 k=12 k=14 k=16 k=18 k=20

mmm Gemm(P)

m— GEMM(X)

Comparison 4: M=10000, N=2000 k=10; change max_iteration

k=20

ite=2
ite=4
ite=h
Ie=§
ite=10
ite=12
ite=14
ite=16
ite=18
ite=20

0.3
0.25
0.2
0.15
0.1
0.05

ite=2
ite=4
ite=h
ite=}
ite=10
ite=12
ite=14
ite=16
ite=1%
ite=20

QR{Q) Gemm(Q)

0.00737
L0118
0.0163
(L0206
(.02%
L0311
{10337
{10382
{0429
{10478

(100401
(1.00402
(.00402
0.004
0.00402
(100409
{1.00401
(100403
{10036
{00359

Ciemm(F)

1.010%
1.0216
0.0324
0.0433

QRIF)

01008
0.00792
0.007%
0.00794
0.00796
{1.00851
(100788
(00819
(.00786
(100793

SVD
.00012%
.000124
0000123
0.000121
0.000122
(1000148
{1.000131
{1.000124
.00012%
(1000131

GEMM(X) | GEMM(Y)

(1.000126
1.000127
0000134
0.000123
0.000128
{10013
(.000127

(100012
(L0028
(1000123

M=10000,N=2000 k=10

ite=16 ite=18 ite=20

ite=2 ite=4

=B QR(Q)
= GEMM(X)

LAPACK

ite=6 ite=8

B Gemm(Q)

m GEMM(Y) :m GET-SET

CFU

14.1
14.72
14.74
14.27
14.73
13.28
14.11
14.57
14.72
13,83

ite=10 ite=12 ite=14
= Gemm(P) = QR(P) ® SVD
mother
GPU

0.21 00600651
0.37 0.0599229
0.34 01099142
0.69 0.1299179
1.01 01802631
097 0.1805129
1.21 02000809
1.33 0.229393
1.49 0.2399459
166 0270127

GET-SET

(0000331 00215
10000319 00215
(0000372 00214
(0000319 00215
(0000331 00215
(L0319 00214
0.0000329 00215

0000031 00214
0.0000319 00215

0000031 00215

other
1,008
00228
00276
00323
0032
0.049
0.037
0071
0069
0.083

M=10000,N=2000 k=10

16

14 /_\/\/—_\

12

10

Time(s)

ite=2 ite=4 ite=6 ite=8 ite=10 ite=12 ite=14 ite=16 ite=18 ite=20

mmm QR(Q) Gemm(Q) Gemm(P) QR(P)
= SVD mmm GEMM(X) wessm GEMM(Y) : mmmmm GET-SET
= Other e | APACK e CPU

6. Motivation and Application of Randomized Approximation

Singular Value Decomposition has a lot of applications in large-scale data analysis. A general
family of applications for this algorithm is Principal Component Analysis applications, where
a database (of documents, images etc.) that exists in a high dimensional space is projected to a
lower dimensional space using SVD. It has been successfully used to filter out noises and
extract the underlying features of the data in many data analysis tools. While the most

obvious benefit of randomization is that it can lead to faster algorithms. [2]

For example, we can use the randomized SVD onto Latent Semantic Indexing(LSI), genetic

clustering, subspace tracking and image processing.

In astronomy, for example, very small angular regions of the sky imaged at a range of
electromagnetic frequency bands can be represented as a matrix—in that case, an object is a

region and the features are the elements of the frequency bands.

Similarly, in genetics, DNA Single Nucleotide Polymorphism or DNA microarray expression
data can be represented in such a framework, with Aj; representing the expression level of the

i-th gene or SNP in the j-th experimental condition or individual. [2]

What’s more, Latent semantic indexing. Latent semantic indexing(LSI) is an indexing and
retrieval method that uses a mathematical technique called singular value

decomposition (SVD) to identify patterns in the relationships between the terms and concepts
contained in an unstructured collection of text. A matrix containing word counts per
paragraph (rows represent unique words and columns represent each paragraph) is
constructed from a large piece of text and a mathematical technique called (SVD) is used to

reduce the number of rows while preserving the similarity structure among columns. [4]

7. Conclusion

In this project, | mainly have done the following things:

(1) Use LAPACK/BLAS to implement the randomized algorithm on CPU

(2) Use MAGMA to implement basic randomized algorithm on GPU

(3) Implement out-of-memory randomized algorithm when the matrix does not fit on the
GPU, there are mainly two methods: using single queue, manual pipelining and using UMA
and CUBLAS-XT on GPU.

(4) set up tester to compare performances, then optimize the algorithm.

8. Future Work

If the node has multiple GPU and power iteration multiplication by A is very expensive, then
one might consider using multiple GPU. Ideally this can be done simply by using CUBLAS-
XT.

When the matrix is too big, we should try to get familiar with different randomized sampling

and updating methods for the out-of-core Matrix.

Also, there are many applications for us to explore like Latent Semantic Indexing (LSI),

genetic clustering, subspace tracking, and image processing.

9. Acknowledgements
This project is sponsored by Oak Ridge National Laboratory, Joint Institute for
Computational Sciences, University of Tennessee, Knoxville and The Chinese University of

Hong Kong.

Most sincere gratitude to my mentors: Dr. Ed D‘Azevedo’s and Dr. Ichitaro Yamazaki.

Reference

[1] Harris, M. and →, V. (2017). Unified Memory in CUDA 6. [online] Parallel Forall.
Available at: https://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/ [Accessed
21 Jun. 2017].

[2] Mahoney, M. (2011). Randomized algorithms for matrices and data. Hanover, Mass.:
Now Publishers.

[3] Drinea, E., Drineas, P. and Huggins2, P. (2017). A Randomized Singular Value
Decomposition Algorithm for Image Processing Applications. [ebook] 1 Computer Science
Department, Harvard University Cambridge, MA 02138, USA 2 Computer Science
Department, Yale University New Haven, CT 06520, USA. Available at: http://ai2-s2-
pdfs.s3.amazonaws.com/e881/439705f383468b276415b9d01d0059¢1d3e5.pdf [Accessed 26
Jun. 2017].

[4] En.wikipedia.org. (2017). Latent semantic analysis. [online] Available at:
https://en.wikipedia.org/wiki/Latent_semantic_analysis [Accessed 29 Jun. 2017].

[5] Cs.virginia.edu. (2017). Pinned vs. non-pinned memory. [online] Available at:
https://www.cs.virginia.edu/~mwb7w/cuda_support/pinned_tradeoff.html [Accessed 11 Jul.

2017].

