A
T %
AN

OpenDIEL

Supported by The National Science Foundation

Tristin Baker, Jordan Scott, and Zachary Trzil
Mentor: Dr. Kwai Wong

Introduction

What is OpenDIEL?

e Lightweight workflow framework for HPC’s to run multiple parallel softwares as
OpenDIEL Modules from one executable
o Allows for communication and data transfer between the different modules

e Uses a driver to drive the IELExecutive

o Driver reads a workflow file to identify the different modules/groups/sets the IELExecutive will
use in order to run

e Uses MPI (Message Passing Interface) to facilitate transfer of data and
information the different modules need

e Has two forms of communication
o Direct Communication and Tuple Space Communication.

What is OpenDIEL? (cont.)

e Used for simulating system-wide scientific applications

e Comparison to other Scientific workflow managers
o Main use is for multidisciplinary work
o Scalable computational performance
o DIEL’s 2 types of communication

e OpenDIEL

OpenDIEL Requirements

e Driver File

e Config File
e User source code okt dbpesmy
O ModMaker the n;r;mifs.:::::‘n;::‘mm

hhhhh

Communication

=== =
- ==

CDMMLIB

ModMaker

Python Package

Transforms a C, C++, or Fortran file
(or directory of files) into an openDIEL
module(s)

Standalone

user code

User
defined

settings

ModMaker

Supported
Languages:

-‘ C
O (Cimr
* Fortran

$ 3§ 3 3

Configuration
file template

IEL-

compatible »

|__module |

Template

‘

User

modifications to
configuration

SRl 3 Executable

Final
» configuration
file

awiniuny

OpenDIEL Workflow: Modules

e An openDIEL compatible piece of
code.

e FEach module is given parameters

e Can be Parallel or Serial

OpenDIEL Workflow: Groups

Allows user to specify which order to

run modules in

Groups can have dependencies to

other groups

o The specified group must finish

before the dependent one can
run

Modules contained in groups always

run in serial

User can also specify how many

iterations each group should run

OpenDIEL Workflow: Sets

e Allows user to specify which groups

should run concurrently

o Each group’s modules run in serial, but
the groups can run concurrently

e Allows user to specify the number of

iterations a set will run

o This determines how many times each
group in the set will run

Graphical User Interface

GUI and Workflow

e Interface is used to organize
modules, sets, and groups and to
create the “workflow.cfg” file that
is used by the OpenDIEL driver to
run

e This will be done by using Java’s
DnD (Drag and Drop) functions

e User can use GUI to execute
code once workflow file is written

Using GUI for Execution

private void
runIconActionPerformed(java.awt.event.ActionEvent

e User can now execute code through the GUI) ¢

String[] args = new String[] {"/bin/sh",

using Java’s ProcessBuilder and Process -, }
", /runscript"};
C|aSSGS i:gizfsl:)rje;
e The output of the program will be sent to the E:gg:zggjj}j:;gﬁg;?ew

OpenDIEL’s output tab, which has also seen o oy et
. . File(System.getProperty("user.dir")));
ImprOvementS thIS summer. tabPanel.setSelectedIndex(3);
e . . p = pb.start();
e User specifies where script is. InputStrean is = p.getInputStrean() ;

InputStreamReader 1isr = new
InputStreamReader (is);

BufferedReader input = new
BufferedReader (isr);

System.out.flush();

while((line = dinput.readLine()) != null) {

this.output.readFromExecution(line);

}

input.close();

JOptionPane.showMessageDialog(this,
"Done!"); 12

Output Tab

e Now has the ability to show output of execution of programs.
e User can save output into a text file for later viewing.
e Gives live feedback of output

e Improvements:
o Make this process multithreaded so output will show even when scrolling down.

13

Live Demonstration

Not Yet Implemented

e The Drag-and-Drop features does not yet work, but the framework is
implemented in the GUI and does not require much more work to get
functioning.

Allowing the user to launch code remotely via SSH.
Allowing the user to convert their code to OpenDIEL compatible modules by
using the “ModMaker”.

15

Direct Communication

Direct Communication

e Method for modules to share data directly between one another

e Facilitated by a shared boundary condition
o Main method of direct communication
o Found in IEL_exec_info_t data structure as double * shared_bc
m Each module has shared_bc_write and shared_bc_read
e Sizes modified in workflow configuration file
o shared_bc size is set in the workflow configuration file

e |EL_bc_putandIEL_bc_get
o Method the modules use for their shared_bc_read and shared_bc_write to communicate

o Wrappers around MPI_Send and MPI_Receive
o IEL_bc_exchange

Direct Communication Visualized

s

MODULE O

~

£

shared_bc

>

(IEL_bc_exchangel...))

<

e

20 paieys

-

MODULE 1

~

18

Using Direct Communication For Laplace Example

e OpenDIEL implementation of MPI Laplace example program
e |n the original, the 1000x1000 matrix existed in one function.

e With the OpenDIEL implementation, the matrix can be any size and can be split
into however many functions the user wants thanks to the shared_bc.

e Within the workflow configuration file, the user sets where the modules can

read from and write to.

o Inthis example, the user will want the ‘shared_bc_write’ to be equal to its top and bottom rows,
and its ‘shared_bc_read’ field to be able to read from the module above and below’s
‘shared_bc_write’ field.

19

Laplace Example Visualized

5- POINT FD STENCIL
(1J+1)

POINT JACOBI ITERATION

T(1,J)= 0.25*{Told(1-1,J)
+(Told(141, J)
+(Told(1,J -1)
+(Told(1,J +1)}

20

Laplace Example Visualized

0 1001
0
1 PE
(0,0) (0,1001) 250 ;
o5 LZZZZ7777777777777
(1,1) (1,1000) 280 AT T AT
, PE 1
g0 LLLZIZZ7 7777777777
500 PER IR T TEIZRTIET
—_— PE 2
PR ETS T TTE THE

1000,1) (1000,1000) 751
(100, 750 LTI ETEERE T L
(1001,1001) PE 3

1001

function=
args=
Llibtype=

shared bc readg
shared bc write=
size=

Laplace Example Visualized

for(i =500; 1< s i) |
exec info->shared be[i] = t[0][1%500]

}

IEL be_exchange(exec_info, , Grequest);
for(i = i I+
exec_info->shared be[1] = t[nr-1][i%1000]

}

IEL be exchange(exec info, , &request);

for(i = 500; i< i i) |
1[0][1%560] = exec info->shared be[i]

}

for(i = 1000; 1 < 1500; it+] {
tlnr-1][1%1000] = exec info->shared be[i)

}

22

To Do:

e Remove Global shared_bc
o Inits current implementation, if direct communication is being used, OpenDIEL designates a
shared_bc array of size num_shared_bc to each module. This is a waste of memory for the
most part, and is not scalable.

23

Tuple Space Communication

Tuple Space - What is it?

e Inshort, atupleis a list

o Example: Cartesian Coordinate system --
a “repository” of two-tuples

o We use three-tuples to store data. A value that
identifies the server (our ‘x coordinate’), a value
that identifies the data location on that server
(our ‘y coordinate’), and the data itself

o Imagine if at every point there was a ‘bucket’
in which data could be dumped. This would be a

representation of our 3-dimensional tuple space.

yp]
23
{—;3,1! .
B () x
=13 2 ' =1 | 2
(=1.5=25)} ,

25

Tuple Space - What is it?

e In more technical terms, a tuple space is an associative memory paradigm for
distributed/parallel computing

o Repository of tuples that can be accessed concurrently

o Processes can put, read, and delete tuples from the repository

o Goals: Minimize blocking communication and maximize scalability and usability
m All processes communicate with each other through the tuple space

26

Tuple Space Communication

Requirements:

O

Non-blocking -- Sender does not wait for message to be received

|- AXXXXX—| |- D-l Y, Ny D-|
|---m- Bxx-| [----—-- Exx---| VS [--mmeee B-l |- E--I x = wait time for blocking I/O
|- Cl [--Fxxxxxx--| [~emmmememneen Cl|-F-

Asynchronous -- Concurrent processing in multithreaded environments is necessary for parallel
computing

Reliability -- Scientific studies require repeatability. Asynchrony can lead to race conditions if not
handled properly

27

Tuple Space - Previous Work

e Facilitated by the Tuple Server

o The tuple server listens for and intercepts all MPI_Send/Recv calls with MPI_Probe
m Usedthe MPI_ANY_TAG to listen

o Flags are used by the sender to let the tuple server know how to respond to requests and are
used during server initialization
m These flags were errantly picked up by already initialized servers

o Data is stored in a RB-Tree of arbitrary size. Each individual node has a “data tag” (hash)
o Within each node, there is a queue of messages to be read

o Data profile: [data tag (hash) | data size | data]

28

Distributed Tuple Space

e Modules may use a distributed array of tuple servers to store data in system

memory

o The user may specify a single server to
) Proc. 0 Proc. 1 Proc. 2
place data on and may access multiple

tuple servers concurrently

o A process that calls for data must wait
until the data is put on the server -- blocking

T JanJas ajdny /
7 Janaas 9|dny
I@CISEINCIlI —

29

Distributed Tuple Space

e Modules may use a distributed array of tuple servers to store data in system

memory
o The user may instead request that the 3
data be distributed evenly among the tuple
servers IEL_dist_tput

o The user does not need to choose which
server to use

o Both methods may be used in conjunction
with each other

rACISEISET I
€ Janas 9|dny

<
)
Ll
QU
o
)
4
3

T 4ones 9|dn

o Does not block! Returns immediately if the data is not present

¥ Jon49s 9jdny

30

Distributed Tuple Space - Why?

e Speed of communication

o Each server is its own process with its own memory. Large data transfers can take place on
multiple tuple servers simultaneously instead of proceeding serially on a single tuple server

e Data Resiliency
o Data can be striped across tuple servers to prevent data loss if connection to a node is lost

o Each server can write critical data to disk when not in use, protecting from system crashes

31

Distributed Tuple Space Implementation

e Each instance of a tuple server is run as a module
o Diriver file and workflow file must be consistent with the number of
tuple servers being used
e Server O initializes the metadata server and is reserved
for managerial tasks

e Server 1isthe metadata server and is reserved
o Server 1also contains a struct that stores relevant information about

the state of the servers

e All other tuple servers are available for data storage

Distributed Tuple Comm
(Current Prototype)

Config
File

Executive

Manager_init,
|IEL INFO,
Module INFO,
Tuple Server INFO

Distributed Tuple Space

Meta-Data =

IEL_dist_tput(...),
IEL_dist_tget(...)

Client1 Client2

32

Distributed Tuple Space Implementation

e Sending data

A client can send data to the distributed array of tuple servers by calling IEL_dist_tput()

(@)
o The data is distributed evenly among the available tuple servers
o Sets up two arrays of meta data:
m The server rank in the order used
m The size of the corresponding piece of IEL_dist_tput
data sent to the tuple server *
o Stores the metadata on the first tuple server

\
\
\
\
|
— —
£ £
< =5 =
@ ® ®
7 7
= ® ®
o = =
o 3 3
&) = =
N w

T 49nJ9S 9jdny)

¥ Janes ajdny

33

Distributed Tuple Space Implementation

® Receiving data

o A client can receive data stored on the distributed array of tuple servers by calling

IEL_dist_tget()
o Uses the metadata to pull the data from @

the servers in the order in which it was stored

dist_tget
/

o Reconstructs the data into an array that the < — /
caller has access to /_/// ,

Z Janias 9jdn)

\
\
\
\
\
\
\
€ Januas 9|dny

¥ 4anJes 9|dn

<
™
~
Q
o
Q
=
@

T Janas 9|dn)

34

Distributed Tuple Space API

e |EL_dist_tput (size_t size, const char *tag, void *data)

o Size is the size of the data to be sent

o The tagis a user-defined string to uniquely identify the data (NOTE: it is expected that the string
is NULL terminated, otherwise unexpected behavior may occur.)

o The data is the data to store on the server. If this data is stored in an array, simply pass the array
as the parameter

35

Distributed Tuple Space API

e |EL_dist_tget (size_t *size, const char *tag, unsigned char del, void **data)

o Size will be set by the function call and is the size of the data returned to the user
o The tag is the user-defined string to identify the data -- the same tag passed to IEL_dist_tput()

o The del variable is a TRUE/FALSE (1/0) value indicating to delete the data from the server(s) if
TRUE and to keep it in place if FALSE.

o The data is the memory address of an UNALLOCATED pointer to the data that the function will
fill in

36

Distributed Tuple Space API

e The original tput and tget functions can be used to access tuple servers
concurrently!

o |EL_tput(size_t size, int tag, int serverRank, void *data)

o |EL_tget(size_t *size, int tag, int serverRank, unsigned char del, void **data)

e These currently do not interact with the metadata server. In the future, the
metadata server can keep track of these calls as well so that a non-blocking
version of each function can be created

37

Distributed Tuple Space Testing

e Methodology

o The running time of openDIEL was benchmarked with two modules communicating using a
single tuple server, distributed tuple —
servers, and file I/O S

® Results

o The distributed tuple server
performance was comparable with the
single tuple server performance with a
constant small overhead for openDIEL
to initialize the extra processes

——File|/0 =—®=Distributed TS (12) =®=Single TS

Size of Data Set (MB)

38

Future Work

e Create non-blocking versions of the original tput/tget functions
e Develop an algorithm to stripe data across the distributed tuple servers

e Develop a scheme to tag data as critical and write this critical data to disk at

certain checkpoints when the tuple server is not in use
o Create a restore feature to relaunch after a failure

e Create easy to follow documentation and user-guides so that end users can
begin using openDIEL for their projects

e Release an alpha version of openDIEL

39

Acknowledgements

e [unding

o The National Science Foundation (NSF)

e Facilities
o The University of Tennessee (UTK) & The Joint Institute for Computational Sciences (JICS)

e Program director/Mentor
o Dr. Kwai Wong

40

