iE UNIVERSITYof
TENNESSEE

KNOXVILLE

OpenDIEL: A Parallel Open Source Workflow Engine
Students: Tristin Baker (Maryville College), Jordan Scott (Morehouse College),

. JICS

Joint Institute for

Computational Sciences

Zac Trzil (UTK), Mentor: Dr. Kwai Wong (UTK)

What is OpenDIEL?

OpenDIEL standsfor open Distributive Interoperable

Executable Library. It facilitates communication between

loosely coupled modules leveraging the MPI (Message

Parsing Interface)

system. W.ith a user-defined

configuration file and driver, openDIEL can output a

single executable managing the communication between
multiple modules, allowing for efficient data sharing between

unique, data-intensive modules.

[

Configuration
File

\ Executive /

Driver
Specifies
cfg file
1
allsthe executive
roc

The driver ¢
for each process, supplying

the name of the configuration Optimizer J

file as an argument

COMMLIB
|
I
04 |!
35 R
3
S
N
Al
30
38
SESEES

!

!

| Thermal
[PT Module] [Madile

Better Direct Communication Example

Data Fluid Radiation |
Module Module Module

Previously, the examples showing off the direct

communication aspect of the OpenDIEL did not adequately
show the OpenDIEL’s capabilities as well as it could have.

Therefore, an example using Laplace Transformation

Matrices was

for(1 = 500: 1< 1000 i+4) {
exec info->shared bc[i] = t[0][1%
}

IEL bc exchange(exec 1info,

created.

l;

, &request);

{

function=
args=
libtype=

shared bc read
shared bc write=
size=

}

-
for(i = 1000; 1 < 1500; i++) {
exec info->shared bc[i] = tinr-1][1%1060]; La place O
} b
shared bcC
|IEL_bc_exchange(...)
IEL bc exchange(exec 1info, , &request);
NS
| shared bc
for(1 = 500; 1 < 1060; 14+) { 4
t[0][1%560] = exec info->shared bc[i];
} Laplace 1
for(i = 1000; 1 < 1500; i+) { -

t{nr-1][i%1000] = exec info->shared bc[i];

}

This provided a clearer example of what was really going on

in the direct communication.

Distributed Tuple Space Distributed Tuple Space

Overview: Modules may use a distributed array
of tuple servers to store data in system memory that other
modules may access. The sender places the data using
IEL_dist_tput() and a user-defined data tag as an argument of
the function. The receiver, using the same
tag and the IEL_dist_tget() function will be

able to retrieve the data from the distributed order in which is was sjcored .
array e | Beatie ® Reconstructs the data into an array that the client passed to the

E function

Receiving data: A client can receive data stored on the distributed
array of tuple servers by calling IEL_dist_tget():

® Queries the meta data server for the information corresponding
to the tag the function was called with
e Uses the meta data to pull the data from the servers in the

Distributed Tuple Comm
(Current Prototype)

Sending data: A client can send data to the
distributed array of tuple servers by calling
IEL dist_tput():

Results: Distributing data across multiple tuple servers shows
almost no increase in program running time while file I/O grows

e Distributes data even among available tuple II """"""" atan exponential rate.

servers { .] Distributed Tuple Server us. File 1/0 Performance
e Sets up two arrays of meta data: 6 6

o The server rank in the order used - . ‘s

o The size of the data sent to that tuple server
e Stores the meta-data on the first tuple server

User Interface Improvement

The above graph shows the running time of two modules
sharing data through openDIEL, one sending and one
receiving data.

The User Interface serves to replace how =
OpenDIEL currently operates. It does this by j@H Y Af <
allowing users to enter information directly maremepmie

into a single Interface as opposed to editing

CTE :
multiple files, and lines of code. T Taking advatage of the distributed tuple servers, data can be
[e | duplicated across the servers to provide RAID-like failure
The Interface will allow for users to enter protection. A single or subset of tuple servers can be
modules, groups and sets. This information designated to backup to disk without interfering with the
will be used to make the “workflow.cfg” file [/ primary processes and their data.
necessary for running OpenDIEL. : o

Direct communication should take place in local a shared bc
rather than a global. In its current implementation, the

Future works for the User Interface are shared bc wastes memory and is not scalable.

1. Fully inplament functinoallity listed above.
2. Allow users to convert their C or Fortran code into a
OpenDIEL module.

. To implement an open database of Modules.

4. Launch OpenDIEL executables on HPCs through the GUI
via SSH.

5. Create runscripts by analyzing user code and
determining how many processes the OpenDIEL
executable needs.

Acknowledgements

o

This project is made possible by funding provided by the NSF,
facilities provided by the University of Tennessee, and
computational resources provided by XSEDE.

