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Overview 

 Accuracy & prediction 

 Design of light absorbing 

devices 

 Density Function Theory 

(DFT) based approaches 

 Basis Set  
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 A spectroscopic technique that measures 
the absorption of radiation as a function 
of wavelength (or energy) of light. 

𝑨 = 𝜺𝒃𝒄 
 

𝑬 = 𝒉𝒗 



 Higher energy 

 Electronic transitions 

UV-Vis Absorption 



Basis Sets 
 A set of functions combined in linear combinations to 

create molecular orbitals 

 Typically atomic orbitals centered on atoms 
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Types of Basis Sets 



6-311G++** 
# G functions summed 

to describe inner shell 

# G functions that 

comprise the first STO  

# G functions that 
comprise the 

second STO  

# G functions that 

comprise the third STO  

Diffuse 

functions on 
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Computational Cost 

Basis 
# of Basis 

Functions 
Relative Time 

STO-3G 26 0.05 

6-31G 48 0.3 

6-31G* 72 1 

6-311G* 90 3 

6-311G++ 264 235 

cc-pVTZ 204 82 

cc-pVQZ 400 3400 

aug-cc-pCVQZ 712 41000 



Our Hypothesis 

o Calculated state 

energies are bound 

(always higher) 

o Ground state 

energies converge 

faster than excited 

state energies 

o Absorbance 

energies are the 

differences in 

energies. 
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Anthracene Benzaldehyde Bipyridyl 

Molecules  

Chlorobenzophenone Indene 

Water 

Benzene 

Furan 
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 cc-pVDZ 

 aug-cc-pVTZ 

 aug-cc-pVDZ 

Parameters 

Geometry Optimization 

Qchem 4.1 

DFT/B3LYP 

Basis: LANL2DZ 
 

Absorbance Spectra Calculations 

Machine: NICS Darter 

TD-DFT in NWChem 6.3  

DFT/PBE96 

Basis Sets: Pople, Dunning 



Results  
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Discussion 

 Red Shifts 

 Convergence at augmented polarized basis sets 

 Agreeable with UV-Vis experimental data 

 cc-pVTZ 



Future Work 
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