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Abstract

The vascular system is an important component for the human
health and a computational model of blood flow could help di-
agnosis and treatment of health problems. Also, this project
evaluates the stability of the solver to handle fluid structure in-
teraction problem with the boundary implementation. Blood
flow is described by 3D cylindrical incompressible Navier-
Stokes equations (INS), and a set of structure equations de-
termines the radial and longitudinal deformation of the vessel
wall. Parallel Interoperable Computational Mechanics Sys-
tem Simulator (PICMSS) is chosen to solve INS. PICMSS is
a parallel computational software for solving equations with
continuous Galerkin finite element method and is written in C
program with MPI and uses Trilinos iterative library for solv-
ing systems of linear equations generated internally by finite
element method. On the other hand, I use continuous Galerkin
finite element method and Newmark method to solve the struc-
ture equations.

1 Overview

This report is to simulate vascular flow in arteries by using
incompressible Navier-Stokes equations(INS),which describe
blood velocity and pressure, and a set of structure equations
that determines the radial and longitudinal deformation of the
vessel wall.

The main goal is to evaluate the stability of implemented
solvers to handle fluid structure interaction problems. The
fluid-structure equations are solved by continuous Galerkin fi-
nite element method and will extend to discontinuous Galerkin
finite element method. This project also utilizes DIEL to solve
weak coupling equations.
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To solve the equations, Parallel Interoperable Computational
Mechanics System Simulator(PICMSS) was chosen. PICMSS
is a parallel computational software for solving equations with
continuous Galerkin finite element method.

INS is solved by continuous Galerkin finite element method
with the initial conditions and boundary solutions from Quar-
teroni et al. [1]. For 1D and 2D axisymmetric structure equa-
tions, I first implemented the algorithm presented in Ottesen
et al. [2], then use continuous Galerkin finite element method
and also Newmark method in Hughes [3].For 3D structure
equations, I use the approach from Raoul et al. [4], then use
continuous Galerkin finite element method.

2 Fluid-Structure Interactions

There are two major components in fluid-structure interac-
tions, fluid(blood) and solid structure(vessel wall).They affect
each other. Blood flow causes deformation of the vessel wall
and deformation of the wall changes the boundary conditions
of blood flow.
Fluid (blood) is modeled by Navier-Stokes equations. Solid
structure (vessel wall) is modeled by partial differential equa-
tions of 1D, 2D and 3D, giving radial and longitudinal defor-
mation of wall from its resting state. This project develop a
coupling strategy to solve fluid-structure equations.

2.1 Fluid Equations

{
ut − 1

Re ∇2u+u ·∇u+∇p = 0
∇ ·u = 0

2.2 Structure Equations

{
∇ · τs−∇ · ps = 0
det(F) = 0

where τ
s = G(F ·FT − I),

F = ( ~∇0~x)T



2.3 Algorithm

1. Solve Navier-Stokes equations(INS) for blood flow velocity
and pressure
2. Solve structure equations for deformations of the vessel
wall
3. Update the mesh and radial velocity at vessel wall
4. Repeat Step 1-3 until a stable solution is reached
5. t = t + ∆t
6. Continue from Step 1

3 2D Axisymmetric Fluid equations

I assume that blood flow is axisymmetric and without swirl.
Therefore, the fluid equations are derived using cylindri-
cal representation(r,x,θ) of the incompressible Navier-Stokes
equations with no θ component, where x is in axial direction,
r is in radial direction and θ is angular coordinate.Hence, the
fluid equations take the form:
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where u is the radial velocity, w is the longitudinal veloc-
ity, p is blood pressure, ρ is the density of blood (constant,
1g/cm3), and ν = µ/ρ is the kinematic viscosity (also con-
stant, 0.035cm/s).

3.1 Mathematical transformation of Fluid
Equation

The fluid equations are reduced to a matrix form through trans-
formation to weak finite element form and semi-discretization.
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3.1.2 Fluid Equation (2)
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3.2 Projection Method

The first step is using Euler backward method to approximate
∂u
∂t ,

∂w
∂t . Then, the pressure(p) is replaced by SPHI, which is

corrected by PHI for each step. PHI satisfies the following
equation:
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Hence, the whole system is as follow and it is solved by
PICMSS:
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The PICMSS code and result are present in the Appendix.

4 Structure Equations

Structure equations are based on the Ottesen’s formula[2].
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where ξ,η represent longitudinal and radial deformations of
the vessel wall respectively.

4.1 Physical constants

Parameters are

• h thickness of wall

• a≈ 10−3m radius of artery

• Ex, Eθ Young’s modulus in the x and θ directions.
Ex/Eθ ≈ 1.2.

• Ma, Lx,Lr ≈ 17 × 103kg/(sm2), Kx,Kr ≈
33 × 103kg/(s2m2) are the coefficients from mod-
eling the tethering force as a dash pot. Ma is the
additional mass of the dash pot system, Lr and Lx are
the frictional coefficients, and Kr,Kx are the spring
coefficients.

• M0 = Ma +ρ0h≈ 4kg/m2 where ρ0 is the density of the
wall

• Tt0 ,Tθ0 ≈ 0 reference state of stresses in the longitudinal
and circumferential directions

• σx=σθ = 0.29 Poisson ration in the x and θ directions

• ν = µ/ρ kinematic viscosity

• ρ≈ 103kg/m3 density of blood

• c0 = Eθh/(2aρ) ≈ 5m/s Moens-Korteweg wave propa-
gation factor

4.2 Mathematical transformation of First
structural equation
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= 3.8×103×DETeJ1[A20x]

Se
i =

∫
Ωe

ψ
e
i µ[

∂w
∂r

+
∂u
∂x

]adxdr

= 3.5×10−3× [
∂w
∂r

+
∂u
∂x

]a×DETe[A10]

Qe
i =

∮
Γe

ψ
e
i qnds = 0

{Me
1}

∂2

∂t2 {X
e}+{Ce

1}
∂

∂t
{Xe}+{Ke

1}{Xe}+{De
1}{Ne}

= {Qe
1}+{Se

1}

4.2.2 Newmark Method

Apply Newmark method to the structure equations to deal with
the second order PDE

({Me
1}+

δt
2
{Ce

1}+
δt2

4
{Ke

1}){DDX}n+1 +{De
1}{N}n+1

= {Qe
1}n+1 +{Se

1}n+1−{Ce
1}({DX}n +

δ

2
{DDX}n)

− {Ke
1}({X}n +δt{DX}n +

δt2

4
{DDX}n)

{X}n+1 = {X}n +δt{DX}n +
δt2

4
({DDX}n +{DDX}n+1)

{DX}n+1 = {DX}n +
δt
2
({DDX}n +{DDX}n+1)

4.3 Mathematical transformation of Sec-
ond structural equation

M0
∂2η

∂t2 +Lr
∂η

∂t
+Krη = (− Eθh

a2(1−σθσx)
+

Tθ0

a2 )η+Tt0
∂2η

∂x2

− Eθhσθ

a(1−σθσx)

∂ξ

∂x
+[p−2µ

∂u
∂r

]a

Strong form:

0 =
∫

Ωe
ψ

e
i {M0

∂2η

∂t2 +Lr
∂η

∂t
+(Kr +

Eθh
a2(1−σθσx)

− Tθ0

a2 )η−Tt0
∂2η

∂x2 }dxdr

+
∫

Ωe
ψ

e
i {

Eθhσθ

a(1−σθσx)

∂ξ

∂x
− [p−2µ

∂u
∂r

]a}dxdr

∫
Ωe

ψ
e
i {M0

∂2η

∂t2 +Lr
∂η

∂t
+(Kr +

Eθh
a2(1−σθσx)

− Tθ0

a2 )η}−Tt0
∂ψe

i
∂x

∂η

∂x
dxdr

+
∫

Ωe
ψ

e
i

Eθhσθ

a(1−σθσx)

∂ξ

∂x
dxdr =

∫
Ωe

ψ
e
i [p−2µ

∂u
∂r

]adxdr+
∮

Γe
ψ

e
i

∂η

∂x
nxds

Semi-discretization:

η(x,y)≈ η
e(x,y) =

n

∑
j=1

Ne
j ψ

e
j(x,y)

∫
Ωe

ψ
e
i {M0

∂2
∑

n
j=1 Ne

j ψe
j

∂t2 +Lr
∂∑

n
j=1 Ne

j ψe
j

∂t

+ (Kr +
Eθh

a2(1−σθσx)
− Tθ0

a2 )
n

∑
j=1

Ne
j ψ

e
j}dxdr

−
∫

Ωe
{Tt0

∂ψe
i

∂x

∂∑
n
j=1 Ne

j ψe
j

∂x
+ψ

e
i

Eθhσθ

a(1−σθσx)

∂∑
n
j=1 Xe

j ψe
j

∂x
}dxdr

=
∫

Ωe
ψ

e
i [p−2µ

∂u
∂r

]adxdr+
∮

Γe
ψ

e
i

∂η

∂x
nxds



n

∑
j=1

∫
Ωe

ψ
e
i ψ

e
j{M0

∂2Ne
j

∂t2 +Lr
∂Ne

j

∂t
}

+ (ψe
i ψ

e
j(Kr +

Eθh
a2(1−σθσx)

)− Tθ0

a2 Tt0
∂ψe

i
∂x

∂ψe
j

∂x
)Ne

j }dxdr

+
n

∑
j=1

∫
Ωe
{ψe

i
Eθhσθ

a(1−σθσx)

∂ψe
j

∂x
Xe

j }dxdr

=
∫

Ωe
ψ

e
i [p−2µ

∂u
∂r

]adxdr+
∮

Γe
ψ

e
i

∂η

∂x
nxds

4.3.1 1D version

Me
i j =

∫
Ωe

M0ψ
e
i ψ

e
jdxdr

= 4×DETe[A200]

Ce
i j =

∫
Ωe

Lrψ
e
i ψ

e
jdxdr

= 17×103×DETe[A200]

Ke
i j =

∫
Ωe
(Krψ

e
i ψ

e
j +

Eθh
a2(1−σθσx)

ψ
e
i ψ

e
j−

Tθ0

a2 Tt0
∂ψe

i
∂x

∂ψe
j

∂x
)dxdr

= (33×103 +1.09×107)DETe[A200]

De
i j =

∫
Ωe
{ψe

i
Eθhσθ

a(1−σθσx)

∂ψe
j

∂x
dxdr

= 3.17×103×DETeJ1[A20x]

Se
i =

∫
Ωe

ψ
e
i [p−2µ

∂u
∂r

]adxdr

= [p−2ν
∂u
∂r

]aDETe

Qe
i =

∮
Γe

ψ
e
i

∂η

∂x
nxds = 0

{Me
2}

∂2

∂t2 {N
e}+{Ce

2}
∂

∂t
{Ne}+{Ke

2}{Ne}+{De
2}{Xe}

= {Qe
2}+{Se

2}

4.3.2 Newmark Method

Apply Newmark method to the structure equations to deal with
the second order PDE

({Me
2}+

δt
2
{Ce

2}+
δt2

4
{Ke

2}){DDN}n+1 +{De
2}{X}n+1

= {Qe
2}n+1 +{Se

2}n+1−{Ce
2}({DN}n +

δ

2
{DDN}n)

− {Ke
2}({N}n +δt{DN}n +

δt2

4
{DDN}n)

{N}n+1 = {N}n +δt{DN}n +
δt2

4
({DDN}n +{DDN}n+1)

{DN}n+1 = {DN}n +
δt
2
({DDN}n +{DDN}n+1)

4.4 2D version

2D version of structure equations are the same as the 1D ver-
sion except for the boundary term and the use of elementary
functions.

{Me
1}

∂2

∂t2 {X
e}+{Ce

1}
∂

∂t
{Xe}+{Ke

1}{Xe}+{De
1}{Ne}= {Qe

1}+{Se
1}

Me
i j =

∫
Ωe

M0ψ
e
i ψ

e
jdxdr

= 4×DETe[Cn200]

Ce
i j =

∫
Ωe

Lxψ
e
i ψ

e
jdxdr

= 17×103×DETe[Cn200]

Ke
i j =

∫
Ωe

Kxψ
e
i ψ

e
j−

Exh
1−σθσx

∂ψe
i

∂x

∂ψe
j

∂x
dxdr

= 33×103×DETe[Cn200]−13.1× (J1)
2DETe[Cn2xx]

De
i =

∫
Ωe

ψ
e
i (

Exhσx

a(1−σθσx)
+

Tt0 −Tθ0

a
)

∂ψe
j

∂x
dxdr

= 3.8×103×DETeJ1[Cn20x]

Se
i =

∫
Ωe

ψ
e
i µ[

∂w
∂r

+
∂u
∂x

]adxdr

= 3.5×10−3× [
∂w
∂r

+
∂u
∂x

]a×DETe[Cn10]

Qe
i =

∮
Γe

ψ
e
i qnds

= qn[A10]

{Me
2}

∂2

∂t2 {N
e}+{Ce

2}
∂

∂t
{Ne}+{Ke

2}{Ne}+{De
2}{Xe}= {Qe

2}+{Se
2}

Me
i j =

∫
Ωe

M0ψ
e
i ψ

e
jdxdr

= 4×DETe[Cn200]

Ce
i j =

∫
Ωe

Lrψ
e
i ψ

e
jdxdr

= 17×103×DETe[Cn200]

Ke
i j =

∫
Ωe
(Krψ

e
i ψ

e
j +

Eθh
a2(1−σθσx)

ψ
e
i ψ

e
j−

Tθ0

a2 Tt0
∂ψe

i
∂x

∂ψe
j

∂x
)dxdr

= (33×103 +1.09×107)DETe[Cn200]

De
i j =

∫
Ωe
{ψe

i
Eθhσθ

a(1−σθσx)

∂ψe
j

∂x
dxdr

= 3.17×103×DETeJ1[Cn20x]

Se
i =

∫
Ωe

ψ
e
i [p−2µ

∂u
∂r

]adxdr

= [p−2ν
∂u
∂r

]aDETe[Cn10]

Qe
i =

∮
Γe

ψ
e
i

∂η

∂x
nxds =

∂η

∂x
nx[A10]



4.5 Combined System

({Me
1}+

δt
2
{Ce

1}+
δt2

4
{Ke

1}){DDX}n+1 +{De
1}{N}n+1(4)

= {Qe
1}n+1 +{Se

1}n+1−{Ce
1}({DX}n +

δ

2
{DDX}n)

− {Ke
1}({X}n +δt{DX}n +

δt2

4
{DDX}n)

({Me
2}+

δt
2
{Ce

2}+
δt2

4
{Ke

2}){DDN}n+1 +{De
2}{X}n+1(5)

= {Qe
2}n+1 +{Se

2}n+1−{Ce
2}({DN}n +

δ

2
{DDN}n)

− {Ke
2}({N}n +δt{DN}n +

δt2

4
{DDN}n)

{X}n+1 = {X}n +δt{DX}n +
δt2

4
({DDX}n +{DDX}n+1)(6)

{DX}n+1 = {DX}n +
δt
2
({DDX}n +{DDX}n+1) (7)

{N}n+1 = {N}n +δt{DN}n +
δt2

4
({DDN}n +{DDN}n+1)(8)

{DN}n+1 = {DN}n +
δt
2
({DDN}n +{DDN}n+1) (9)

Next, replace {N}n+1and{X}n+1 using (6),(8) and then
change them into matrix form.(

A B
C D

)(
DDX
DDN

)
=

(
F1
F2

)

A = {Me
1}+

δt
2
{Ce

1}+
δt2

4
{Ke

1}

B =
δt2

4
{De

1}

C =
δt2

4
{De

2}

D = {Me
2}+

δt
2
{Ce

2}+
δt2

4
{Ke

2}

F1 = {Qe
1}n+1 +{Se

1}n+1−{Ce
1}({DX}n +

δ

2
{DDX}n)

− {Ke
1}({X}n +δt{DX}n +

δt2

4
{DDX}n)

− {De
1}({N}n +δt{DN}n +

δt2

4
{DDN}n)

F2 = {Qe
2}n+1 +{Se

2}n+1−{Ce
2}({DN}n +

δ

2
{DDN}n)

− {Ke
2}({N}n +δt{DN}n +

δt2

4
{DDN}n)

− {De
2}({X}n +δt{DX}n +

δt2

4
{DDX}n)

The 1D result and PICMSS code for 2D structure are present
in the Appendix.

4.6 3D structural equation

D is the deformation matrix of vessel wall, and p is the pres-
sure of the wall.

∂

∂x1
(F2

11 +F2
12−1− p)+

∂

∂x2
(F21F11 +F22F12) = 0

∂

∂x1
(F21F11 +F22F12)+

∂

∂x2
(F2

21 +F2
22−1− p) = 0

− ∂p
∂x3

= 0

F11F22−F21F12 = 0

Fi j =
∂Di

∂x j

5 Appendix

5.1 Formulation of Structure equations

The movement of the vessel wall can be described by balanc-
ing internal and external forces on a surface element of the
vessel wall in its deformed state. It is convenient to change
the variables to a coordinate system connected to the surface
of the vessel. This is shown in the top part of Figure B.1. Let
H be any vector pointing to the middle surface, as shown in
Figure B.1:

H = xx̂+Rr̂

where x̂ and r̂ are unit vectors in the cylindrical coordinate
system in the longitudinal and radial directions, respectively,
and R(x, t) is the radius of the vessel. The new coordinates
(n, t,θ) can be determined from H . By assuming expressed in
terms of t̂ and n̂ given by

t̂ =
∂H
∂x

| ∂H
∂x |

=
x̂+ ∂R

∂x r̂√
1+( ∂R

∂x )
2

and n̂ =
r̂− ∂R

∂x x̂√
1+( ∂R

∂x

(B.4)

because t̂ and n̂ are orthogonal. Solving for x̂ and r̂ gives

x̂ =
t̂− ∂R

∂x n̂√
1+( ∂R

∂x

and r̂ =
n̂+ ∂R

∂x t̂√
1+( ∂R

∂x )
2

(B.5)

Internal Forces
The internal forces on the infinitesimal surface element (dx×
rdθ) have three components: a force N across the vessel wall,
a shearing force S on the sides of the element, and a force
T normal to each of the edges; see the bottom part of Figure
B.1. Most of these components are zero. The vessel wall is
thin, and so any variation in the force across the wall can be
neglected; i.e., Nt = Nθ = 0. The flow is axisymmetric and
without swirl. Hence no shearing force will act on the side of
the element; i.e., St = Sθ = 0. Thus the only forces left are Tt
and Tθ , the normal forces to each of the edges.
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θ r n

θ

t

xH

Nθ

St ′

Tt ′

St

Nt

Sθ ′

Sθ
Tθ

Tt

Nθ ′

Tθ ′

Nt ′

Figure B.1. The top part shows the original (r, x, θ) and the new (n, t, θ) coordi-
nates. The bottom part shows the forces on an infinitesimal surface element cut out of the
vessel. N is the force acting across the vessel wall, S is the shearing force acting on the
side of the element, and T is the force acting normal to each of the edges. The subscripts
t and θ indicate the direction according to the coordinate system following the surface of
the vessel, and the superscript ′ indicates that the force is acting in the negative direction
(e.g., Nt ′ = −Nt ).

B.3.2 External Forces

The internal forces must be balanced by external forces acting on the element. Let total
external force be denoted by

P = Pt t̂ + Pnn̂, (B.6)

where Pt and Pn are the tangential and normal components, respectively. P can be split into
inertial forces, tethering forces, and surface forces. In the following sections, these will be
analyzed separately.D
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Figure B.1
External Forces
The internal forces must be balanced by external forces acting
on the element. Let total external force be denoted by

P = Pt t̂ +Pnn̂ (B.6)

where Pt and Pn are the tangential and normal components, re-
spectively. P can be split into inertial forces, tethering forces,
and surface forces. In the following sections, these will be an-
alyzed separately.
Inertial Force
Let ξ(r,x, t) and η(r,x, t) be the longitudinal and radial dis-
placements of the wall. The inertial force per unit area is given
by (see Atabek and Lew (1966))

TFI =−ρ0h(
∂2ξ

∂t2 x̂+
∂2η

∂t2 r̂), (B.7)

where ρ0 is the density and h is the thickness of the wall. Be-
cause of the thin wall assumption, h must be small compared
to the vessel radius. We assume that both ρ0 and h are con-
stant along any vessel of a given radius. The inertial force is
the force ensuring that the internal and external forces are bal-
anced. The inertial force must be included because the system
is not steady, so it is necessary to take acceleration into ac-
count. In physics, this is known as d’Alambert’s principle.
Tethering Force
The tethering force TFT can be modeled using a simple me-
chanical model consisting of a spring, a dash pot, and some
lumped additional mass (Atabek, 1968). The tethering force
(per unit area) acting in the radial and longitudinal dir(ections
is given by

TFT =−(Ma
∂2ξ

∂t2 +Lx
∂ξ

∂t
+Kxξ)x̂−(Ma

∂2η

∂t2 +Lr
∂η

∂t
+Krη)r̂,

(B.8)
where Ki and Li ,i = x,r,are the spring and frictional coeffi-
cients of the dash pot in the ith direction and Ma is the addi-
tional mass of the system. These are assumed to be the same
in both directions. Since both inertial and tethering forces act
in the same direction, it is convenient to add them before pro-
jecting the forces in the normal and tangential directions. Let

M0 = Ma +ρ0h.

The resultant inertial and tethering force in the tangential and
normal directions, respectively, then yield

TFTres
· t̂ (B.9)

=−
[(

M0
∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ

)
+

(
M0

∂2η

∂t2 +Lr
∂η

∂t
+Krη

)
∂R
∂x

]/√
1+
(

∂R
∂x

)2
,

TFTres
· n̂ (B.10)

=

[(
M0

∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ

)
∂R
∂x
−
(

M0
∂2η

∂t2 +Lr
∂η

∂t
+Krη

)]/√
1+
(

∂R
∂x

)2
.

Surface Force
The surface force is a result of fluid interaction with the vessel
wall. If the stress tensor of the fluid is given by TFS , then in-
teraction with the inner vessel wall (at r = R?h/2 = a) is given
by−TFS · n̂. Assume that the stress tensor can be separated into
radial and longitudinal directions

(−TFS · n̂) · t̂ and (−TFS · n̂) · n̂ (B.11)

The stress tensor for incompressible flow is given by Ock-
endon and Ockendon (1995):

σi j =−pδi j +µ
(

∂ui

∂x j
+

∂u j

∂xi

)
In cylindrical coordinates the stress tensor becomes

TFS =

[
Trr Trx
Trx Txx

]
a
=

[
−p+2µ ∂u

∂r µ( ∂w
∂r + ∂u

∂x )

µ( ∂w
∂r + ∂u

∂x ) −p+2µ ∂w
∂x

]
a

(B.12)
The fluid stress in the t̂ and n̂ directions can be found as

(−TFS · n̂)· t̂ =
[
(Txx−Trr)

∂R
∂x

+Trx

((
∂R
∂x

)2
−1

)]
a

/(
1+
(

∂R
∂x

)2
)
.

(B.13)

(−TFS · n̂)· n̂=
[

2Trx
∂R
∂x
−Trr−Txx

(
∂R
∂x

)2
]

a

/(
1+
(

∂R
∂x

)2
)
.

(B.14)
Total External Force
The total external force can be found by adding the inertial and
tethering forces (B.9) and (B.10) as well as the surface forces
(B.13) and (B.14). Generally, these forces are not estimated at
the same point, but because of the thin wall assumption the re-
sulting error in the total external force is negligible. Equation
(B.6) gives

P = Pt t̂ +Pnn̂ = (−TFS · n̂+TFTres
) · t̂ +(−TFS · n̂+TFTres

) · n̂.
The tangential component is

Pt =

[
(Txx−Trr)

∂R
∂x

+Trx

((
∂R
∂x

)2
−1

)]
a

/(
1+
(

∂R
∂x

)2
)

(B.15)

−
((

M0
∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ

)
+

(
M0

∂2η

∂t2 +Lr
∂η

∂t
+Krη

)
∂R
∂x

)/√
1+
(

∂R
∂x

)2



and the normal component is

Pn =

[
2Trx

∂R
∂x
−Trr−Txx

(
∂R
∂x

)2
]

a

/(
1+
(

∂R
∂x

)2
)

(B.16)

+

((
M0

∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ

)
∂R
∂x
−
(

M0
∂2η

∂t2 +Lr
∂η

∂t
+Krη

))/√
1+
(

∂R
∂x

)2
.

Balancing Internal and External Forces When a wave is
propagated along a vessel, the vessel will dilate. Hence the
surface will appear as shown in Figure B.2. Considering this
surface, we can derive the equilibrium equations. Balancing
of internal and external forces will also be carried out in two
parts: one for tangential contributions and one for normal con-
tributions.
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B.3.3 Balancing Internal and External Forces
When a wave is propagated along a vessel, the vessel will dilate. Hence the surface will
appear as shown in Figure B.2. Considering this surface, we can derive the equilibrium
equations. Balancing of internal and external forces will also be carried out in two parts:
one for tangential contributions and one for normal contributions.

Tθ

Pn

Pt

R(x) dθ

v

Tθ

(

1 +
(

∂R
∂x

)2
)

1
2
dx

R(x + dx) dθT (x + dx)

dθ

T (x)

(

π
2 − v

)

Figure B.2. A volume element and its internal Ti and external Pi forces.

Balancing Tangential Components of Internal and External Forces

The area of the surface in Figure B.2 is given by Rdθ
√

1 + (∂R/∂x)2 dx, and the tangential
part Ptan of the external strain Pt is given by

Ptan = PtRdθ

√

1 +
(

∂R

∂x

)2

dx.

The pressure load on any given volume element is −Pext . This should be balanced by the
internal stress over the surface element projected in the tangential direction. Thus the stress
over the surface in the tangential direction is given by

Ttan1 = −Tt (x)R(x)dθ + Tt (x + dx)R(x + dx)dθ ≈ ∂

∂x
(TtR)dxdθ,

where the last equality is approximated using the first order Taylor expansion for Tt (x +
dx)R(x + dx).D
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Figure B.2
Balancing Tangential Components of Internal and Exter-
nal Forces The area of the surface in Figure B.2 is given by
Rdθ

√
1+(∂R/∂x)2dx, and the tangential part Ptan of the ex-

ternal strain Pt is given by

Ptan = PtRdθ

√
1+
(

∂R
∂x

)2
dx.

The pressure load on any given volume element is−Pext . This
should be balanced by the internal stress over the surface ele-
ment projected in the tangential direction. Thus the stress over
the surface in the tangential direction is given by

Ttan1 =−Tt(x)R(x)dθ+Tt(x+dx)R(x+dx)dθ≈ ∂

∂x
(TtR)dxdθ,

where the last equality is approximated using the first order
Taylor expansion for Tt t(x+dx)R(x+dx).
Furthermore, the stress from the radial tension also con-
tributes. As seen on the right- hand side of the surface ele-
ment in Figure B.2, the radial tension Tθ gives contributions
in both the tangential and the radial directions. Since we have
axial symmetry, the net tension around the vessel at any loca-
tion is zero. The part of Tθ pointing backward in the tangential
direction is given by

Ttan2 =−Tθ cos
(

π

2
− v
)√

1+
(

∂R
∂x

)2
dx =−Tθ

∂R
∂x

dθdx,

where v is defined as shown in Figure B.2. Balancing Ttan1

and Ttan2 with Ptan and dividing by dθdx gives

−Tθ

∂R
∂x

+
∂

∂x
(RTt)+PtR

√
1+
(

∂R
∂x

)2
= 0. (B.17)

Balancing Normal Components of Internal and External
Forces Balancing normal internal stresses with the normal ex-
ternal strain gives

Pn = κθTθ +κtTt ,

where κi, i = θ, t , is the curvature in the i direction. As seen
in Figure B.3, the curvatures in the longitudinal and angular
directions are given by

κθ =
1
R

/√
1+
(

∂R
∂x

)2
and κt =−

∂2R
∂x2

/√
1+
(

∂R
∂x

)2
3

.

Hence the balancing equation becomes

κθTθ +κtTt −Pn = 0

⇔ Tθ

R
−Tt

∂2R
∂x2

/(
1+
(

∂R
∂x

)2
)
−Pn

√
1+
(

∂R
∂x

)
= 0.

(B.18)
Inserting (B.15) and (B.16) into (B.17) and (B.18) gives

Tθ

∂R
∂x

+
∂

∂x
(RTt)

−R
(

M0
∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ+

(
M0

∂2η

∂t2 +Lr
∂η

∂t
+Krη

)
∂R
∂x

)

+R

[
(Txx−Trr)

∂R
∂x

+Trx

((
∂R
∂x

)2
−1

)]
a

/√
1+
(

∂R
∂x

)2
= 0,

(B.19)

Tθ

R
−Tt

∂2R
∂x2

/(
1+
(

∂R
∂x

)2
)

−
(

M0
∂2ξ

∂t
+Lx

∂ξ

∂t
+Kxξ

)
∂R
∂x

+M0
∂2η

∂t2 +Lr
∂η

∂t
+Krη

[
2Trx

∂R
∂x
−Trr−Txx

(
∂R
∂x

)2
]

a

/√
1+
(

∂R
∂x

)2
= 0.

(B.20)
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Figure B.3. Curvature of the vessel. The longitudinal curvature (in A) is given by
κt , and the tangential curvature normal to the surface (in B) is given by κθ .

Tθ

R
− Tt

∂2R

∂x2

/

(

1 +
(

∂R

∂x

)2
)

−
(

M0
∂2ξ

∂t2
+ Lx

∂ξ

∂t
+ Kxξ

)

∂R

∂x
+ M0

∂2η

∂t2
+ Lr

∂η

∂t
+ Krη

−
[

2Trx

∂R

∂x
− Trr − Txx

(

∂R

∂x

)2
]

a

/

√

1 +
(

∂R

∂x

)2

= 0. (B.20)

B.4 Elasticity Relations
The purpose of this section is to set up stress-strain relations such that the stress components
Ti can be related to the displacements of the wall (ξ, η). These are measured from some
reference state where vessels are stretched to their in vivo length. The reason is that a loose
piece of artery (unstressed) requires very large deformations to be brought to its original
stressed state. However, the general theory of elasticity applies only for small deformations;
see, e.g., Landau and Lifshitz (1986). This problem can be avoided by making the derivations
orginate from some initial stressed state. Hence it is assumed that, when a wave moves along
an artery, it undergoes small deformations from its reference state. The initial state is chosenD
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Elasticity Relations The purpose of this section is to set up



stress-strain relations such that the stress components Tican
be related to the displacements of the wall (ξ,η). These
are measured from some reference state where vessels are
stretched to their in vivo length. The reason is that a loose
piece of artery (unstressed) requires very large deformations
to be brought to its original stressed state. However, the gen-
eral theory of elasticity applies only for small deformations;
see,e.g.,LandauandLifshitz(1986). Thisproblemcanbeavoid-
edbymakingthederivations orginate from some initial stressed
state. Hence it is assumed that, when a wave moves along
an artery, it undergoes small deformations from its reference
state. The initial state is chosen to be the state where the
transmural pressure of the artery is zero. Furthermore, it is
assumed that it is adequate to apply a linear relation between
stress and strain. Let the reference state of stresses in the
longitudinal and circumferential directions be denoted by Tt0
and Tθ0 . Then the following relations can be obtained:

Tθ−Tθ0 =
Eθh

1−σθσx
(εr+σxεx) and Tt−Tt0 =

Exh
1−σθσx

(εx+σθεr),

(B.21)
where Ei, i = θ, t, is Young’s modulus in the ith direction; h
is the wall thickness; σi, i = θ,x,is the Poisson ratio in the
ith direction; and εi,i = θ,x,is the displacement relative to the
reference state; see, e.g., Landau and Lifshitz (1986). The rel-
ative circumferential and longitudinal displacements are given
by

εr =
η

R
and εx =

∂ξ

∂x
Balancing Fluid and Wall Motions Boundary conditions
linking the velocity of the wall to the velocity of the fluid re-
main to be specified. Assume that the fluid particles are at rest
at the wall. Hence

[u]r=a =
∂η

∂t
and [w]r=a =

∂ξ

∂t
(B.22)

Furthermore, assume that the component of the fluid velocity
normal to the wall is equal to the normal velocity of the inner
surface of the vessel wall. Hence the normal velocity of the
wall, at a = R(x+ξ, t)−h/2, is given by

d
dt

(
r−R+

h
2

)
= 0⇔ [u]r=a− [w]r=a

∂R
∂x
− ∂R

∂t
= 0

Linearization In principle the correct number of equations
and boundary conditions are present. However, in their present
form these equations are too complicated to solve analytically.
As discussed earlier, the purpose was to set up a simple sys-
tem of equations for the smaller arteries. Therefore, following
Atabek and Lew (1966), we have chosen to linearize them.
The linearization is based on expansion of the dependent vari-
ables in power series of a small parameter ε around a known
solution. This is defined by a situation where the fluid is at
rest and the vessel is inflated and stretched. Furthermore, if
ε = 0, then all dependent variables give the known solution.
The expansion is given by

s = s1ε+ s2ε
2 + · · · f or s = u,w,η,ξ,Trx, (B.23)

s̃= s̃0+ s̃1ε+ s̃2ε
2+ · · · f or s̃= p,R,Tθ,Tt ,Trr,Txx, (B.24)

where s0 is a constant defining the reference state (at zero
transmural pressure). Let f (r,x, t) be either of the func-
tions in (B.23) or (B.24). In order to accomplish the

linearization, f (r,x, t) must be evaluated at r = a = R− h/2.
The power series expansion together with the Taylor series ex-
pansion to first order yields

f (r,x, t) ≈ f (a,x, t)+ f ′(r,x, t)(r−a)
= f0(a,x, t)+ f1(a,x, t)ε

+( f ′0(a,x, t)+ f ′1(a,x, t)ε)(r− (R0 +R1εh/2))

= f0(a,x, t)+ k f ′0(a,x, t)

+ε( f1(a,x, t)−R1 f ′0(a,x, t)+ k f ′1(a,x, t)), (B.25)

where k = r−R0+h/2. Using (B.23) to (B.25), the zeroth and
first order equations can be obtained by assembling terms to
the respective powers of ε from the nonlinear equations (B.1)
to (B.3), (B.19), and (B.20). Terms of First Order Approxi-
mations The first order terms of the shell equation (B.19) give

−Tθ0

∂R1

∂x
+

∂

∂x
(R0Tt1 +R1Tt0) (B.30)

−R0

(
M0

∂2ξ1

∂t2 +Lx
∂ξ1

∂t
+Kxξ1−

[
(Txx0 −Trr0)

∂R1

∂x
−Trx1

]
a

)
= 0

⇔M0
∂2ξ1

∂t2 +Lx
∂ξ1

∂t
+Kxξ1 =

∂Tt1
∂x

+
Tt0 −Tθ0

R0

∂R1

∂x
−µ
[

∂w1

∂r
+

∂u1

∂x

]
a
.
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(x, t) (x + ξ, t)

R′ = R0 + ηR0

η

ξ

Figure B.4. Estimation of R(x + ξ, t) using the definitions of ξ and η.

The last equation is obtained using the stress tensor (B.12) for the first order approximation
of Trx1 and the zeroth order approximation of Txx0 − Trr0 , which cancel. The first order
terms of the shell equation (B.20) give

Tθ1

R0
− Tθ0

R1

R2
0

− Tt0

∂2R1

∂x2
+ M0

∂2η1

∂t2
+ Lr

∂η1

∂t
+ Krη1 + Trr1 = 0

⇔ M0
∂2η1

∂t2
+ Lr

∂η1

∂t
+ Krη1 = −Tθ1

R0
+ Tθ0

R1

R2
0

+ Tt0

∂2R1

∂x2
+
[

p1 − 2µ
∂u1

∂r

]

a

,

(B.31)

where we have again used (B.12) for the first order approximation Trr1 .
Assuming that the second order approximations can be neglected, ϵ can be incorpo-

rated into the dependent variables and we can set ϵ = 1. For any (x, t) the first order Taylor
expansion of R(x + ξ, t) gives

R(x + ξ, t) = R(x, t) + ∂R

∂x
ξ = R0 + η,

as seen in Figure B.4. The first order expansion of R from (B.24) is given by

R(x, t) = R0 + R1ϵ + O(ϵ2) = R0 + η1ϵ + O(ϵ2) ⇔ η1 = R1,

since η has no zeroth order term. Furthermore, we approximate R0 by the inner radius
a = R0 − h/2. Since the walls are assumed to be thin compared with the vessel radius,
i.e., h ≪ a, the error is negligible. Finally, the indices 1 are dropped and the definitions
in (B.21) are used for Tθ1 and Tt1 . The linearized equations can be obtained from their first
order approximations; i.e., (B.30) and (B.31) become

M0
∂2ξ

∂t2
+ Lx

∂ξ

∂t
+ Kxξ

= Exh

1 − σθσx

(

∂2ξ

∂x2
+ σx

a

∂η

∂x

)

+ ∂η

∂x

Tt0 − Tθ0

a
− µ

[

∂w

∂r
+ ∂u

∂x

]

a

, (B.32)

M0
∂2η

∂t2
+ Lr

∂η

∂t
+ Krη

= − Eθh

1 − σθσx

(

η

a2
+ σθ

a

∂ξ

∂x

)

+ Tθ0

η

a2
+ Tt0

∂2η

∂x2
+
[

p − 2µ
∂u

∂r

]

a

. (B.33)
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The last equation is obtained using the stress tensor (B.12)
for the first order approximation of Trx1 and the zeroth order
approximation of Txx0 − Trr0 , which cancel. The first order
terms of the shell equation (B.20) give

Tθ1

R0
−Tθ0

R1

R2
0
−Tt0

∂2R1

∂x2 −M0
∂2η1

∂t2 +Lr
∂η1

∂t
+Krη1+Trr1 = 0

⇔M0
∂2η1

∂t2 +Lr
∂η1

∂t
+Krη1 =−

Tθ1

R0
+Tθ0

R1

R2
0
+Tt0

∂2R1

∂x2 +

[
p1−2µ

∂u1

∂r

]
a
.

where we have again used (B.12) for the first order approxima-
tion Trr1 . Assuming that the second order approximations can
be neglected, ε can be incorporated into the dependent vari-
ables and we can set ε = 1. For any (x, t) the first order Taylor
expansion of R(x+ξ, t) gives

R(x+ξ, t) = R(x, t)+
∂R
∂x

ξ = R0 +η,

as seen in Figure B.4. The first order expansion of R from
(B.24) is given by

R(x, t) = R0 +R1ε+O(ε2) = R0 +η1ε+O(ε2)⇔ η1 = R1,



since η has no zeroth order term. Furthermore, we approx-
imate R0 by the inner radius a = R0− h/2. Since the walls
are assumed to be thin compared with the vessel radius, i.e.,
h� a, the error is negligible. Finally, the indices 1 are dropped
and the definitions in (B.21) are used for Tθ1 and Tt1 . The
linearized equations can be obtained from their first order ap-
proximations; i.e., (B.30) and (B.31) become

M0
∂2ξ

∂t2 +Lx
∂ξ

∂t
+Kxξ

=
Exh

1−σθσx

∂2ξ

∂x2 +(
Exhσx

a(1−σθσx)
+

Tt0 −Tθ0

a
)

∂η

∂x
−µ[

∂w
∂r

+
∂u
∂x

]a,

(B.32)

M0
∂2η

∂t2 +Lr
∂η

∂t
+Krη

=(− Eθh
a2(1−σθσx)

+
Tθ0

a2 )η+Tt0
∂2η

∂x2 −
Eθhσθ

a(1−σθσx)

∂ξ

∂x
+[p−2µ

∂u
∂r

]a.

(B.33)

5.2 Result

PICMSS Code for Fluid equations

Result for Fluid equations

1D Structure equations’ result

PICMSS Code for 2D Structure equations
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