
 Computational Sciences
 KNOXVILIE

 Vascular Fluid Structure Simulation

 Vascular Fluid Structure Simulation}

Ivan Au Yeung (Chinese University of Hong Kong) Mentor: Dr. Kwai Wong (UTK)

2014 CSURE REU
4th August 2014

Overview

- Utilize a set of programs to simulate the blood flow in arteries
- Evaluates the stability of implemented solvers to handle fluid structure interaction problems
- Use continuous Galerkin finite element method and will extend to discontinuous Galerkin finite element method
- Utilize DIEL to solve weak coupling equations

Fluid-Structure Interactions

- Blood flow causes deformation of the vessel wall and deformation of the wall changes the boundary conditions of blood flow.
- Two components
- Fluid (blood) modeled by Navier-Stokes equations
- Solid structure (vessel wall) modeled by partial differential equations of 1D, 2D and 3D, giving radial and longitudinal deformation of wall from its resting state
- Develop a coupling strategy to solve fluid-structure equations

Fluid Structure Interaction Equations

Fluid Equations(INS)

$$
\left\{\begin{array}{c}
\boldsymbol{u}_{t}-\frac{1}{\operatorname{Re}} \nabla^{2} \boldsymbol{u}+\boldsymbol{u} \cdot \nabla \boldsymbol{u}+\nabla p=\mathbf{0} \\
\nabla \cdot \boldsymbol{u}=0
\end{array}\right.
$$

Boundary Interactions

$$
[u]_{r-a}=\frac{\partial \eta}{\partial t} \text { and }[w]_{r-a}=\frac{\partial \xi}{\partial t}
$$

Structure Equations

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot \boldsymbol{\tau}^{s}-\boldsymbol{\nabla} p^{s}=\mathbf{0} \\
\operatorname{det}(\boldsymbol{F})=1 \\
\boldsymbol{\tau}^{s}=G\left(\boldsymbol{F} \cdot \boldsymbol{F}^{T}-\boldsymbol{I}\right) \\
\boldsymbol{F}=\left(\vec{\nabla}_{0} \vec{x}\right)^{\mathrm{T}}
\end{gathered}
$$

Algorithm

1. Solve Navier-Stokes equations(INS) for blood flow velocity and pressure
2. Solve structure equations for radial and longitudinal deformations of the vessel wall
3. Update the mesh
4. Update radial velocity at vessel wall
5. $t=t+\Delta t$
6. Continue from Step 1

1D structure and 2D axisymmetric Artery model

Quarteroni, Alfio; Tuveri, Massimiliano; Veneziani,
Alessandro. "Computational vascular fluid dynamics: problems, models, and methods" Comput Visual Sci 2:163-197 (2000).

Axisymmetric Navier-Stokes equations

- Blood flow is axisymmetric flow with the assumption of no tangential velocity
- Can use cylindrical representation of the incompressible Navier-Stokes equations with no tangential velocity:

$$
\begin{aligned}
\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial r}+w \frac{\partial u}{\partial x} & =-\frac{1}{\rho} \frac{\partial p}{\partial r}+\nu\left(\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial x^{2}}-\frac{u}{r^{2}}\right) \\
\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial r}+w \frac{\partial w}{\partial x} & =-\frac{1}{\rho} \frac{\partial p}{\partial x}+\nu\left(\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{\partial^{2} w}{\partial x^{2}}\right) \\
\frac{1}{r} \frac{\partial}{\partial r}(r u)+\frac{\partial w}{\partial x} & =0
\end{aligned}
$$

1D structure formulation

-1D structure equations are based on the Ottesen's formula.

- The structure equations come from the forces acting on the wall
- He first balances internal(T) and external forces(P).
- Then reformulates P into T :

$$
P_{n}=\kappa_{\theta} T_{\theta}+\kappa_{t} T_{t}
$$

where $\kappa_{i}, i=\theta, t$, is the curvature in the i direction.

- Thus, get the 1D structure equations

1D Structure Equations

Vessel Wall Equations

$$
\begin{aligned}
& M_{0} \frac{\partial^{2} \xi}{\partial t^{2}}+L_{x} \frac{\partial \xi}{\partial t}+K_{x} \xi \\
& =\frac{E_{x} h}{1-\sigma_{\theta} \sigma_{x}} \frac{\partial^{2} \xi}{\partial x^{2}}+\left(\frac{T_{t_{0}}-T_{\theta_{0}}}{a}-\frac{E_{x} h \sigma_{x}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)}\right) \frac{\partial \eta}{\partial x}-\mu\left[\frac{\partial w}{\partial r}+\frac{\partial u}{\partial x}\right]_{a} \\
& M_{0} \frac{\partial^{2} \eta}{\partial t^{2}}+L_{r} \frac{\partial \eta}{\partial t}+K_{r} \eta \\
& =T_{t_{0}} \frac{\partial^{2} \eta}{\partial x^{2}}+\left(\frac{T_{\theta_{0}}}{a^{2}}-\frac{E_{\theta} h}{a^{2}\left(1-\sigma_{\theta} \sigma_{x}\right)}\right) \eta+\frac{E_{\theta} h \sigma_{\theta}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)} \frac{\partial \xi}{\partial x}+\left[p-2 \mu \frac{\partial u}{\partial r}\right]_{a}
\end{aligned}
$$

where $E_{i}, i=\theta, t$, is Young's modulus in the i th direction; h is the wall thickness; σ_{i}, $i=\theta, x$, is the Poisson ratio in the i th direction; and $\epsilon_{i}, i=\theta, x$, is the displacement relative to the reference state;

Algorithm for 2D axisymmetric Artery

1. Solve Navier-Stokes equations(INS) for blood flow velocity(u, w) and pressure (p) on a 2D mesh
2. Solve structure equations for radial and longitudinal deformations (η, ζ) of the vessel wall on a 1D mesh
3. Update the mesh using η, ξ, since vessel wall has moved
4. Update radial velocity at vessel wall, since radial blood velocity at vessel wall must equal radial wall velocity
5. Repeat Step 1-4 until a stable solution is reached
6. $t=t+\Delta t$
7. Continue from Step 1

Finite elements

- Divide domain into parts
- Seek approximate solution over each part
- Assemble the parts

Continuous Galerkin finite element method

$$
\begin{aligned}
& u(x, r) \approx u^{e}(x, r)=\sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}(x, r) \\
& \begin{aligned}
\int \psi_{i}^{e} \nabla^{2} u d V & =-\int \nabla \psi_{i}^{e} \cdot \nabla u d V+\oint \psi_{i}^{e} \cdot \nabla u d s \\
& =-\left\{U_{j}^{e}\right\} \int \nabla \psi_{i}^{e} \cdot \nabla \psi_{j}^{e} d V+\oint \psi_{i}^{e} \cdot \nabla u d s
\end{aligned}
\end{aligned}
$$

In PDE template operator form:

$$
\left[\nabla^{2}\right](u)=-\left\{U_{j}^{e}\right\} \int \nabla \psi_{i}^{e} \cdot \nabla \psi_{j}^{e} d V=-[b 2 k k]\left\{U_{j}^{e}\right\}
$$

$\Rightarrow[b 2 k k]=$| x x
 x x x | | | |
| :--- | :--- | :--- | :--- |
| x | x | x | x |
| x | x | x | x |

Transformed Fluid Equations

To solve INS:

Use continuous Galerkin finite element method to approximate the equations

$$
\begin{aligned}
0 & \left.=\int_{\Omega^{e}} \psi_{i}^{e} i \frac{\partial \sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}}{\partial t}+\frac{1}{\rho} \frac{\partial \sum_{j=1}^{n} P_{j}^{e} \psi_{j}^{e}}{\partial r}-\nu\left(\frac{1}{r} \frac{\partial \sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}}{\partial r}-\frac{\sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}}{r^{2}}\right)\right\} d x d r \\
& \left.+\int_{\Omega^{e}} \nu \frac{\partial \psi_{i}^{e}}{\partial x} \frac{\partial \sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}}{\partial x}+\frac{\partial \psi_{i}^{e}}{\partial r} \frac{\partial \sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}}{\partial r}\right) d x d r \\
& -\oint_{\Gamma^{r}} \nu \psi_{i}^{e}\left(\frac{\partial u}{\partial x} n_{x}+\frac{\partial u}{\partial r} n_{r}\right) d s \\
0 & =\sum_{j=1}^{r_{1}^{n}} \int_{\Omega^{e}} \psi_{i}^{e} \psi_{j}^{e} d x d r \frac{\partial W_{j}^{e}}{\partial t}+\sum_{j=1}^{n} \int_{\Omega^{e}} \frac{1}{\rho} \psi_{i}^{e} \frac{\partial \psi_{j}^{e}}{\partial x} d x d r P_{j}^{e} \\
& +\sum_{j=1}^{n} \int_{\Omega^{e}} \nu\left\{\frac{\partial \psi_{i}^{e}}{\partial x} \frac{\partial \psi_{j}^{e}}{\partial x}+\left(\frac{\partial \psi_{i}^{e}}{\partial r}-\frac{\psi_{i}^{e}}{r}\right) \frac{\partial \psi_{j}^{e}}{\partial r}\right\} d x d r W_{j}^{e} \\
& -\oint_{\Gamma^{e}} \nu \psi_{i}^{e}\left(\frac{\partial w}{\partial x} n_{x}+\frac{\partial w}{\partial r} n_{r}\right) d s
\end{aligned}
$$

$[\mathrm{Me}]\{\mathrm{DUe}\}+[\mathrm{Ce}]\{\mathrm{Pe}\}+[\mathrm{Ke}]\{\mathrm{Ue}\}=0$
$[\mathrm{Me}]\{\mathrm{DWe}\}+[\mathrm{Ce}]\{\mathrm{Pe}\}+[\mathrm{Ke}]\left\{\mathrm{We}_{\mathrm{e}}\right\}=0$

Semi-discretization for Fluid Equations

$$
\begin{aligned}
& u(x, r) \approx u^{e}(x, r)=\sum_{j=1}^{n} U_{j}^{e} \psi_{j}^{e}(x, r) \\
& p(x, r) \approx p^{e}(x, r)=\sum_{j=1}^{n} P_{j}^{e} \psi_{j}^{e}(x, r) \\
& w(x, r) \approx w^{e}(x, r)=\sum_{j=1}^{n} W_{j}^{e} \psi_{j}^{e}(x, r) \\
& M_{i j}^{e}=\int_{\Omega^{e}} \psi_{i}^{e} \psi_{j}^{e} d x d r=D E T_{e}[B 200] \\
& C_{i j}^{e}=\int_{\Omega^{e}} \frac{1}{\rho} \psi_{i}^{e} \frac{\partial \psi_{j}^{e}}{\partial r} d x d r=\frac{1}{\rho} D E T_{e}[B 20 y] \\
& K_{i j}^{e}=\int_{\Omega^{e}} \nu\left\{\frac{\psi_{i}^{e} \psi_{j}^{e}}{r^{2}}+\frac{\partial \psi_{i}^{e}}{\partial x} \frac{\partial \psi_{j}^{e}}{\partial x}+\left(\frac{\partial \psi_{i}^{e}}{\partial r}-\frac{\psi_{i}^{e}}{r}\right) \frac{\partial \psi_{j}^{e}}{\partial r}\right\} d x d r \\
& \\
& =\nu D E T_{e}\left(\frac{1}{r^{2}}[b 3000]+[b 2 k k]-\frac{1}{r}[b 300 y]\right)
\end{aligned}
$$

Method for Fluid Equations

- After using finite element method, Euler method and projection method are used.
- Euler forward method:

$$
\frac{\partial u}{\partial t}=\frac{u^{k}-u^{k-1}}{\delta t}
$$

- Projection method:
- Use SPHI to replace pressure (p) and PHI to update SPHI

$$
\begin{array}{r}
\left\{M^{e}\right\} \frac{u^{k}-u^{k-1}}{\delta t}+\left\{C^{e}\right\}\left\{S P H I^{k-1}\right\}+\left\{K^{e}\right\}\left\{U^{k}\right\}=0 \\
\left\{M^{e}\right\} \frac{w^{k}-w^{k-1}}{\delta t}+\left\{C^{e}\right\}\left\{S P H I^{k-1}\right\}+\left\{K^{e}\right\}\left\{W^{k}\right\}=0 \\
\nabla^{2} P H I=\frac{u}{r}+\frac{\partial u}{\partial r}+\frac{\partial w}{\partial x} \\
S P H I^{k}=S P H I^{k-1}+\text { PHI }
\end{array}
$$

1D Structure Equations

To solve Structure Equations :

1. Use continuous Galerkin finite element method

$$
\begin{aligned}
0 & =\int_{\Omega^{e}} \psi_{i}^{e}\left\{M_{0} \frac{\partial^{2} \xi}{\partial t^{2}}+L_{x} \frac{\partial \xi}{\partial t}+K_{x} \xi-\frac{E_{x} h}{1-\sigma_{\theta} \sigma_{x}} \frac{\partial^{2} \xi}{\partial x^{2}}-\left(\frac{E_{x} h \sigma_{x}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)}+\frac{T_{t_{0}}-T_{\theta_{0}}}{a}\right) \frac{\partial \eta}{\partial x}\right. \\
& \left.-\mu\left[\frac{\partial w}{\partial r}+\frac{\partial u}{\partial x^{2}}\right]_{a}\right\} d x d r \\
0 & =\int_{\Omega^{e}} \psi_{i}^{e}\left\{M_{0} \frac{\partial^{2} \eta}{\partial t^{2}}+L_{r} \frac{\partial \eta}{\partial t}+\left(K_{r}+\frac{E_{\theta} h}{a^{2}\left(1-\sigma_{\theta} \sigma_{x} x\right.}-\frac{T_{\theta_{0}}}{a^{2}}\right) \eta-T_{t_{0}} \frac{\partial^{2} \eta}{\partial x^{2}}\right\} d x d r \\
& +\int_{\Omega^{e}} \psi_{i}^{e}\left\{\frac{E_{\theta} h \sigma_{\theta}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)} \frac{\partial \xi}{\partial x}-\left[p-2 \mu \frac{\partial u}{\partial r}\right]_{a}\right\} d x d r \\
& \{M e\} \frac{\partial 2}{\partial t^{2}}\left\{X^{e}\right\}+\{C e\} \frac{\partial}{\partial t}\left\{X^{e}\right\}+\left\{K^{e}\right\}\left\{X^{e}\right\}+\left\{D^{e}\right\}\{N e\}=\left\{Q^{e}\right\}+\{S e\} \\
& \{M e\} \frac{\partial^{2}}{\partial t^{2}}\{N e\}+\{C e\} \frac{\partial}{\partial t}\{N e\}+\left\{K^{e}\right\}\{N e\}+\left\{D^{e}\right\}\{X e\}=\left\{Q^{e}\right\}+\{S e\}
\end{aligned}
$$

2. Use Newmark method to solve system of second order PDE

Newmark Method

This method involves equations of the form:

$$
[M]\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}+[C]\left\{\frac{\partial \eta}{\partial t}\right\}+[K]\{\eta\}=F
$$

The solution of this equation for the Newmark Method is :

$$
\begin{aligned}
& \left([M]+\frac{\delta t}{2}[C]+\frac{\delta t^{2}}{4}[K]\right)\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n+1} \\
= & {[F]_{n+1}-[C]\left(\left\{\frac{\partial \eta}{\partial t}\right\}_{n}+\frac{\delta}{2}\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n}\right)-[K]\left(\{\eta\}_{n}+\delta t\left\{\frac{\partial \eta}{\partial t}\right\}_{n}+\frac{\delta t^{2}}{4}\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n}\right) } \\
& \{\eta\}_{n+1}=\{\eta\}_{n}+\delta t\left\{\frac{\partial \eta}{\partial t}\right\}_{l_{n}}+\frac{\delta t^{2}}{4}\left(\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n}+\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n+1}\right) \\
& \left\{\frac{\partial \eta}{\partial t}\right\}_{n+1}=\left\{\frac{\partial \eta}{\partial t}\right\}_{n}+\frac{\delta t}{2}\left(\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n}+\left\{\frac{\partial^{2} \eta}{\partial t^{2}}\right\}_{n+1}\right)
\end{aligned}
$$

1D Version

- serial code for 1D finite element method and Newmark method
- change X to DDX and N to DDN
- get full couple equations

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\binom{D D X}{D D N}=\binom{F 1}{F 2}
$$

- solve the above matrix by Lapack

Benchmark Result

- Benchmark result of 1D vessel wall
- 1D serial code

Procedures for Fluid Equations

- darter, or star1
- Parallel Interoperable Computational Mechanics Simulation System (PICMSS)
- 5 processors
- Each responsible for several rows of grid
- 1 cm diameter $\times 6 \mathrm{~cm}$ length

PICMSS

- parallel computational software
- solving equations with continuous Galerkin finite element method
- C program with MPI
- uses Trilinos iterative library for solving systems of linear equations generated internally by finite element method.
- 2D triangle and quadrilateral, and 3D tetrahedron and hexahedron master elements.
- fluid flow problems directly written in partial differential equation(PDE) template operator form.

Benchmark Results

- Benchmark result of fluid equations
- Inlet: all are 1 except boundary point
- blood vessel model: 1 cm diameter x 6 cm length
- Outlet:

2D axisymmetric structure equations

- Simulate the vessel wall with no tangential velocity
- Use the same structure equations on 3D mesh

$$
\begin{aligned}
& M_{0} \frac{\partial^{2} \xi}{\partial t^{2}}+L_{x} \frac{\partial \xi}{\partial t}+K_{x} \xi \\
& =\frac{E_{x} h}{1-\sigma_{\theta} \sigma_{x}} \frac{\partial^{2} \xi}{\partial x^{2}}+\left(\frac{T_{t 0}-T_{\theta_{0}}}{a}-\frac{E_{x} h \sigma_{x}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)}\right) \frac{\partial \eta}{\partial x}-\mu\left[\frac{\partial w}{\partial r}+\frac{\partial u}{\partial x}\right]_{a} \\
& M_{0} \frac{\partial^{2} \eta}{\partial t^{2}}+L_{r} \frac{\partial \eta}{\partial t}+K_{r} \eta \\
& =T_{t} \frac{\partial^{2} \eta}{\partial x^{2}}+\left(\frac{T_{\theta_{0}}}{a^{2}}-\frac{E_{\theta} h}{a^{2}\left(1-\sigma_{\theta} \sigma_{x}\right)}\right) \eta+\frac{E_{\theta} h \sigma_{\theta}}{a\left(1-\sigma_{\theta} \sigma_{x}\right)} \frac{\partial \xi}{\partial x}+\left[p-2 \mu \frac{\partial u}{\partial r}\right]_{\theta}
\end{aligned}
$$

- Use PICMSS to solve

2D axisymmetric structure equations(PICMSS)

Full 3D Fluid Equations

$$
\begin{gathered}
\rho\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}\right)=-\frac{\partial p}{\partial x}+\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+\rho g_{x} \\
\rho\left(\frac{\partial v}{\partial t}+u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}\right)=-\frac{\partial p}{\partial y}+\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)+\rho g_{y} \\
\rho\left(\frac{\partial w}{\partial t}+u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}\right)=-\frac{\partial p}{\partial z}+\mu\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)+\rho g_{v} . \\
\text { 3D structure Equations }
\end{gathered}
$$

- Use the approach from Raoul et al. [3]
- D is the deformation of vessel wall, and p is the pressure of the wall

$$
\begin{gathered}
\frac{\partial}{\partial x_{1}}\left(F_{11}^{2}+F_{12}^{2}-1-p\right)+\frac{\partial}{\partial x_{2}}\left(F_{21} F_{11}+F_{22} F_{12}\right)=0 \\
\frac{\partial}{\partial x_{1}}\left(F_{21} F_{11}+F_{22} F_{12}\right)+\frac{\partial}{\partial x_{2}}\left(F_{21}^{2}+F_{22}^{2}-1-p\right)=0 \\
-\frac{\partial p}{\partial x_{3}}=0 \\
F_{11} F_{22}-F_{21} F_{12}=0 \\
F_{i j}=\frac{\partial D_{i}}{\partial x_{j}}
\end{gathered}
$$

DIEL

- Multi-physics problems combining multiple sets of governing principles and conditions in a variety of medium
- Physical domains or conditions are separated and computed independently
- Interaction occurs through a set of shared boundary points, weak coupling
- Reduces the complexity of the system
- Can be solved efficiently on a parallel computer

Workflow Using DIEL

Time Loop

Future Plans

- Run the code of 2D axisymmetric structure equations on PICMSS and compare with result of 1D serial code
- Solve full 3D fluid equations and structure equations
- Solve fully coupled fluid-structure equations
- Use DIEL to solve coupled equations

Acknowledgements

- Mentors: Kwai Wong
- And other JICS staff

Reference:

[1] : Quarteroni, Alfio; Tuveri, Massimiliano; Veneziani,
Alessandro. "Computational vascular fluid dynamics: problems, models, and methods" Comput Visual Sci 2:163-197 (2000). [2] : *Johnny T. Ottesen, Mette S. Olufsen, Jesper K. Larsen, "Applied Mathematical Models in Human Physiology (Siam Monographs on Mathematical Modeling and Computation)." SIAM, 2004.
[3] : Raoul van Loon, Patrick D. Anderson, Frank P.T. Baaijens, Frans N. Van de Vosse, "A three-dimensional fluid-structure interaction method for heart valve modelling", C. R. Mecanique 333 (2005)

