
Analysis of high dimensional data via Topology

Louis Xiang，Fernando Schwartz, Kwai Wong

1



Overview
In this study we will focus on 
computing the topological 
invariant of high dimensional 
data set. By this kind of 
topological analysis, we are able 
to indicate some qualitative 
result about the  high 
dimensional data. We will use 
the ICU medical data set as our 
object to show how the method 
describes the shape of the data 
set.

2



Overview

• MPI on forming the high-density data set 

• Build the Simplicial Complex and compute the 
topological invariant 

• Eden for Large-scale parallel numerical simulation 

• Statistical analysis about the output

3



How to form a high-density dataset
• First, we try to reduce the dimension of the data set by 

selecting the most relevant 8 factors of the patients and do 
interpolation to fill in the missing data. 

Original dataset: 
299264 points with 
dimension 43. It forms a 
~300,000*43 matriX.

New dataset: 299264 
points with dimension 8. 
It forms a ~300,000*8 
matrix with missing 
entries filled by linear 
interpolation.

4



How to form a high-density dataset
• It must be pointed out that direct application of 

simplicial complex approximation to these 
300,000 data points with dimension 8 will lead 
to a wrong detection because of the outliers 
distributed far away from main region. To 
obtain a high-density subset, we use the 
simple density function

• The crucial step is to find the distance matrix where   
!
         # of points: 300,000. So the distance matrix is 300,000 by  
         300,000. Since this matrix is of big magnitude, we may use  
         Darter as our supercomputer to do parellel computing.

5



Algorithm for MPI
We will use 4 processors as an 
example.  
!
Step1: Let A and B be 2 collection of 
points in each processor. P0 read and 
send each part of the matrix to 
other processors and store in A. Let 
B copies A in each processor. 
!
Step2:Calculate the distance matrix 
between A and B in each processor. 
Then, at the k-th iteration, Pi sends A 
to P(i-k) if i-k>=0 (P(k-i) sends to Pi if 
i-k<0), P(i-k)(or Pi) receives and 
update B matrix and calculate the 
distance matrix between A and B in 
each processor again. 

300,000*8 matrix divided into 4 pieces

Note: di,j is the submatrix of the whole 
distance matrix produced by i-th 
iteration in the processor j.

6



Algorithm for MPI
Step3:Continuing in this way until we 
get the distance matrix. 
!
!
!
!
Step4:Do the rearrangement on each 
row and take out the k-th column in each 
processor and combine them together to 
form a long vector. 
!
Step5:Do the rearrangement again on k-
th column and record the points which is 
on the top p% in the rearrangement 
vector. 
!
Through these 5 steps, we are able to 
form the X(K,p), a subset of the original 
data set. 

Note: The different colour means the output 
in different iterations.  
Entries in the same row are produced by the 
same processor.

distance matrix D

Each row in D

Do rearrangement let it grow 
from small to big

New row in D

Pick out the K-th component 
in each row to form a new 

vector and rearrange it again

New vector with dim ~300,000

7



Scaling 

0

4.5

9

13.5

18

1 2 4 8 16 32

Y—time(min) 
X—# of processors

Below is the strong and weak scaling of this method for a relative small 
data set, say, 10,000 point cloud. 

Y—time(min) 
X—# of processors

0

5

10

15

20

0 1 4 8 16 32

 For strong scaling, when # of processors is doubled, the time is decreased by half 
 For weak scaling, we double the # of points but we need to make the # of proc. 4 times as 
many as before. Since all the rearrangements are done locally within each processor, so the 
time will have a small growth if the problem size doubled.

Strong Scaling Weak Scaling



Choose the landmarks
After obtaining the X(K,p), we recommend selecting the 
landmark points by maxmin method. These landmarks are 
used to build the simplicial complex. 
Algorithm:

9

example of  
landmarks from 
data set:



Computation of homology
• We use the landmarks to build the simplicial 

complex.  
• Compute the homology using Fundamental 

lemma of topology. Then we can get the betti 
number which indicates how many holes in each 
dimension of the shape that the data set formed. 
For more details about the knowledge of topology 
and computing the betti number, it is suggested to 
look at H.Edelsbrunner, COMPUTATIONAL 
TOPOLOGY: An Introduction (2008). 

!
Javaplex  is a Java package developed by Stanford 
University and it can directly give us the barcode of 
holes in each dimension for input data.

10



Javaplex example
• The first barcode 

represents the betti0 which 
is the number of the 
connected components  

• Betti1 and 2 represent the 
number of 1-dim and 2-dim 
holes in the graph which 
are the second and 3rd 
barcodes. 

!
✤  Note: The blue line 

indicates the existence of  
the hole with the change of 
parameter. Even though 
there are some short lines 
which are the noise, we can 
still concentrate on the long 
lasting lines. 11



Large-Scale Parellel Numerical simulation

• Note: Betti number depends on the 
landmarks while the first landmark 
is chose randomly as it impacts on 
the choice of other points and 
further the whole set of landmarks. 

!
• Because of the undetermined 

characteristic of landmarks, we 
need to run Javaplex for 10,000 
times for each K and p to give a 
statistical certainty of 97% of the 
betti number.To implement the 
large-scale simulation, we use 
Eden on the Nautilus as it can 
speed up our calculation for a lot.

12



Eden

• Eden is a script-based tool for easily managing runs of 
many small jobs on Nautilus or Darter without 
flooding the job queue. 

• Here is my run file for Javaplex.

run1.sh file:

Note:  run1.sh is the command to run javaplex. The tricky thing is that on 
eden every time you run it, you must find the directory of module and 
load java. Furthermore, sleep 1 is needed since you can only run javaplex 
when you have already loaded java.

13



Eden

• Basically, we can put the command of running  
Javaplex for 10,000 times into the command file and 
create the head file, then Eden can do it for 10,000 
times and gives out the output.

commands file: head.pbs file:

• After that, we can do ‘cat *.out > out.txt’ to make all 
the output into one txt file.

14



Analysis of output
• The output is 10,000 collections of barcodes. It is not reasonable to 

analysis each output by hand. So, better way is to transfer the result to 
matrix and write some programs in Matlab to judge the number of holes in 
each dimension. My basic idea is below:

transfer the every 
interval’s endpoints !
 into a 3-
dimensional array

The 3rd 
column is 

dim

we say if length of the 
interval exceed  
0.18(depends on your 
self), then we  !
improve the betti 
number by 1 in that 
dimension

• Count the times of appearance of different values for each betti number and make 
histograms for each betti number. 

• For K=50,P=50, the histograms for betti numbers of X(K,P) are in the next page.(b0 
are always 1 since only 1 connected component is detected.)

15



Analysis of output

0

1500

3000

4500

6000

0 1 2 3 4
0

2250

4500

6750

9000

0 1 2 3 4

Y-axis:times 
X-axis:b1

Y-axis:times 
X-axis:b2

 Statistically speaking, through the distribution of the output for 
10,000 iterations, we can have 97% certainty that the b1=2 and 
b2=1.

16



Conclusion and Future Study
• However, this is just the case for K=p=50, more 

experiments for different K and p are in the process. 
Through the experiments that we have conducted 
until now, the result that b1=2 and b2=0 is quite 
solid.For this property, the shape below may have 
much possibility to capture this dataset. 

!
• Interesting thing is that bi=0 for any 3<=i<=7 in every 

iteration. The happening of this result on a 8-dim 
data set tells us that there may be some relationships 
between some of the factors of these 8. Further 
analysis will be expected.

17



References and Acknowledgement
[1] V. de Silva and G. Carlsson. Topological estimation using witness 

complexes, Eurographics Symposium on Point-Based Graphics, 
2000. 

[2] H.Edelsbrunner, COMPUTATIONAL TOPOLOGY: An Introduction 
(2008). 

[3] H.Edelsbrunner, D.Letscher and A.Zomorodian, Topological 
Persistence and Simplification,Discrete Comput Geom, 
28:511-533,2002. 

[4] G. Carlsson, T.Ishkhanov, V. de Silva, A.Zomorodian,On the Local 
Behavior of Spaces of Natural imges, Springer, LLC2007.

The research was conducted under the Computational 
Science for REU project and is supported by the JICS, 
founded by the UTK and ORNL. The authors acknowledge 
ORNL for allowing access to high-performance computing 
resources. Also, Jacob Pollack and Pragnesh’s helping in 
Eden part is appreciated a lot. 18


