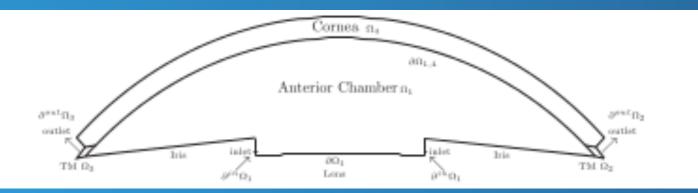

Introduction to Problem

Glaucoma: 2nd leading cause of blindness in the world
 Risk factor for developing glaucoma:

 high intraocular pressure (IOP) - regulated by aqueous humor flow in anterior chamber

 Strong correlation between those with diabetes and developing glaucoma



Open-angle Glaucoma

- Open-angle glaucoma is the more common form of glaucoma (90% of glaucoma patients)
- Results when resistance to outflow increases due to obstructions in the trabecular meshwork and Schlemm's canal
- Normal IOP is considered to be within the range of 1500 Pa to 2900 Pa (glaucoma.org)

Previous Models

- 2-D Model:
 - Developed by J.A. Ferreira et. al (2014)
 - Models pressure in relation to increased resistance in Trabecular Meshwork/Schlemm's Canal
 - Does not account for buoyancy-driven flow

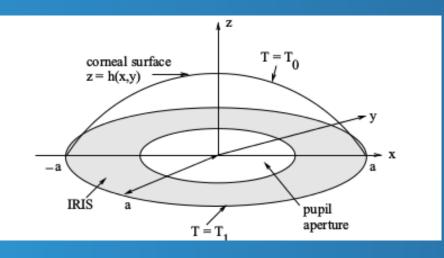
J.A. Ferreira et. al.

- Equations:
 - System 1 applies to anterior chamber (Navier-Stokes)
 - System 2 applies to Trabecular Meshwork/Schlemm's canal (Darcy's Law)

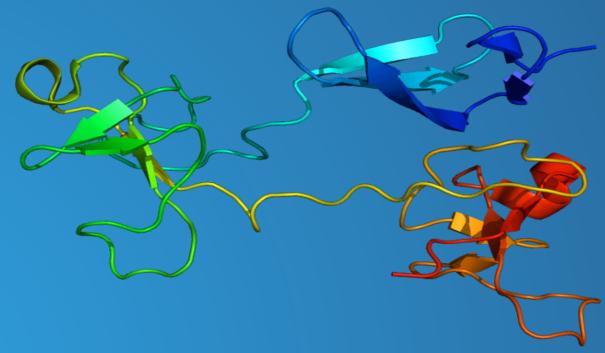
(1)

(2)

$$\begin{bmatrix} \rho \frac{\partial \mathbf{v}}{\partial t} - \nabla \cdot \boldsymbol{\mu} (\nabla \mathbf{v} + (\nabla \mathbf{v})^T) + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p = \mathbf{0} \quad \text{in } \Omega_1, t > \mathbf{0}, \\ \nabla \cdot \mathbf{v} = \mathbf{0} \quad \text{in } \Omega_1, t > \mathbf{0}. \end{bmatrix}$$

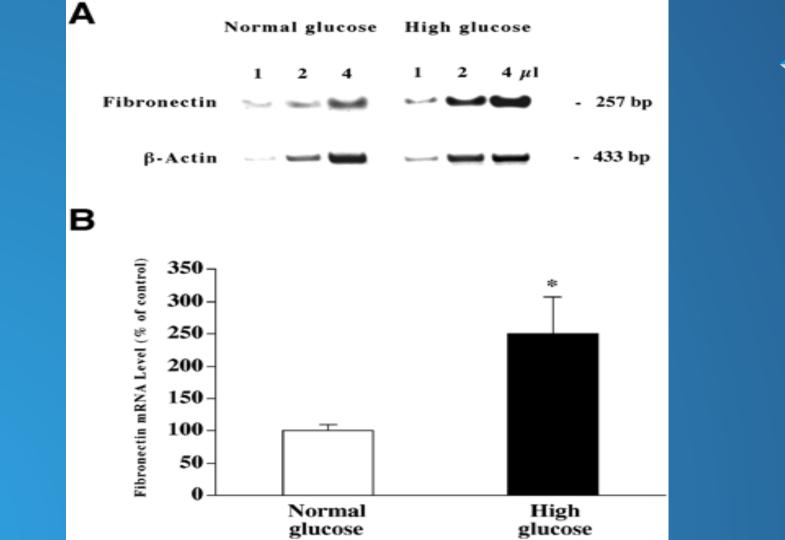

$$\left\{ egin{array}{ll} \mathbf{v}=-rac{\kappa}{\mu}
abla p & ext{in}\,\Omega_2,\Omega_3,t>0,\
abla,\mathbf{v}=\mathbf{0} & ext{in}\,\Omega_2,\Omega_3,t>0. \end{array}
ight.$$

Results


Porosity (ϵ)	Permeability (m ²) of TM	Pressure in anterior chamber (Pa)
0.4	7.59×10^{-14}	1271
0.3	2.35×10^{-14}	1429
0.25	1.19×10^{-14}	1655
0.225	8.09×10^{-15}	1867
0.2	5.33 × 10 ⁻¹⁵	2211
0.175	3.36×10^{-15}	2805
0.15	1.99×10^{-15}	3905
0.125	1.09×10^{-15}	6154
0.1	5.27×10^{-16}	11437

Previous Models

- 3-D Model:
 - Developed by Fitt and Gonzalez (2006)
 - o Buoyancy-driven flow
 - Excludes Trabecular Meshwork/Schlemm's Canal


Fibronectin

http://en.wikipedia.org/wiki/Fibronectin

Fibronectin

 Serves as linker in Extracellular Matrices • ...like the one found in the Trabecular Meshwork • Studies have found increased glucose concentration results in a higher rate of fibronectin production (Roy, Sayon and Tsuyoshi Sato, 2002) • "These findings indicate that a high glucose level in aqueous humor of patients with diabetes may increase fibronectin synthesis and accumulation in trabecular meshwork and accelerate the depletion of trabecular meshwork cells..."

Objectives

- Model IOP under different glucose concentrations in aqueous humor
- Compare results of commercial and academic software
- Develop parallel code to solve equations in model

Method & Equations

• Flow of AH in anterior chamber simulated using modified Navier-Stokes equations:

$$\rho \overline{v} \cdot \nabla \overline{v} = -\nabla p + \mu \nabla^2 \overline{v} + \rho_0 \overline{g} \beta (T - T_{ref})$$

$$\nabla \cdot \overline{v} = 0$$

$$\rho C_p \overline{v} \cdot \nabla T = k \nabla^2 T$$

• Flow in Trabecular Meshwork/Schlemm's canal:

$$\alpha = \frac{\mu}{\Delta p} \Delta e \overline{v} - f(g_c)$$

Finite Element Method

- No guarantee for solution to 3D Navier-Stokes
- Solve using numerical methods
- Split geometry up into discrete set of cells
 - o creates a mesh
- Galerkin method
 - converts PDEs to system of linear equations

Parameters

Parameter	Value
Initial Velocity	1.2 mm/s
Outlet Pressure	1200 Pa
Reference Temperature	22 C
Aqueous Humor Density	1000 kg/m3
Aqueous Humor Viscosity	0.001 kg/(ms)
Aqueous Humor Specific Heat	4182 J/(kgK) [water property]
Aqueous Humor Thermal Conductivity	0.6 W/ (mK)
Glucose Concentration	99.1001 mg/dL (healthy eye); 144.1456 mg/dL (type 2 diabetic eye)

Hardware and Software

- Hardware:
 - Star1
 - Darter
- Software:
 - Deal.II FEM software library
 Cubit mesh generator
 COMSOL Multiphysics Tool

COMSOL

multi-physics simulation tool: 2D

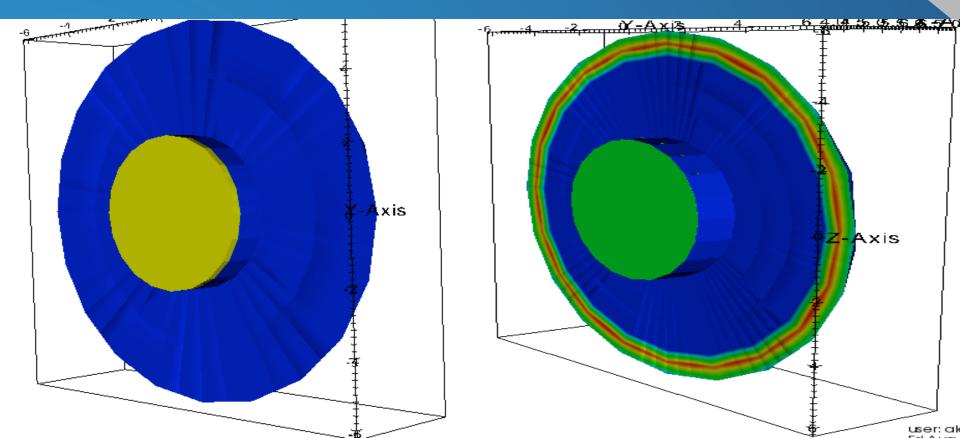
- gives a basic understanding of fluid flow in eye
- 2D axis-symmetry
 - perform simulation in 2D but create 3D result based on that
- 3D

slow, but most accurate simulation of fluid flow

Deal.II

- C++ FEM software library
- Step-35:
 - Standard Navier-Stokes flow
 - Modified to incorporate 2D mesh generated in Cubit
- 3D simulations:
 - Simulations are too slow
 - Modify to make parallel

Deal.II

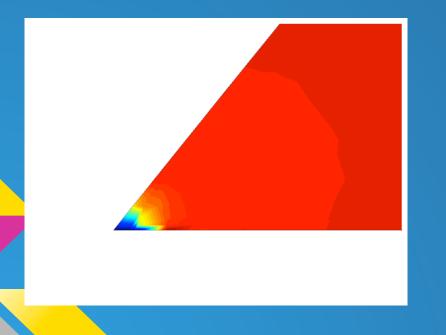

SparseMatrix<double> vel_Laplace_plus_Mass; SparseMatrix<double> vel_it_matrix[dim]; SparseMatrix<double> vel_Mass; SparseMatrix<double> vel_Laplace; SparseMatrix<double> vel_Advection; SparseMatrix<double> pres_Laplace; SparseMatrix<double> pres_Mass; SparseMatrix<double> pres_Diff[dim]; SparseMatrix<double> pres_iterative; Vector<double> pres_n; Vector<double> pres_n_minus_1; Vector<double> phi_n; Vector<double> phi_n_minus_1; Vector<double> u_n[dim]; Vector<double> u_n_minus_1[dim]; Vector<double> u_star[dim]; Vector<double> force[dim]; Vector<double> force[dim]; Vector<double> v_tmp; Vector<double> pres_tmp; Vector<double> rot_u;

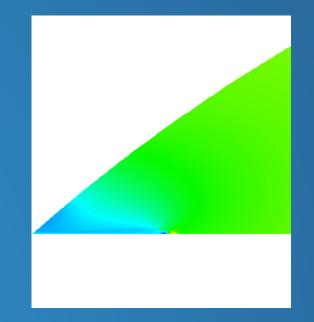
Deal.II

for (typename Triangulation<dim>::active_cell_iterator cell = triangulation. begin_active(); cell != triangulation.end(); + +cell)

```
for (unsigned int f=0; f<GeometryInfo<dim>::faces per cell; ++f)
           if (cell->face(f)->at boundary())
           double x=cell->face(f)->center()[0];
           double y=cell->face(f)->center()[1];
           //double z=cell->face(f)->center()[2];
           if (x = 4.0)
                         cell->face(f)->set boundary indicator (1);
           else if (x==5.0 && ((y>=5.7 && y<=6.245) || (y<=-5.7 && y>=-6.245)))
                         cell->face(f)->set_boundary_indicator (2);
```

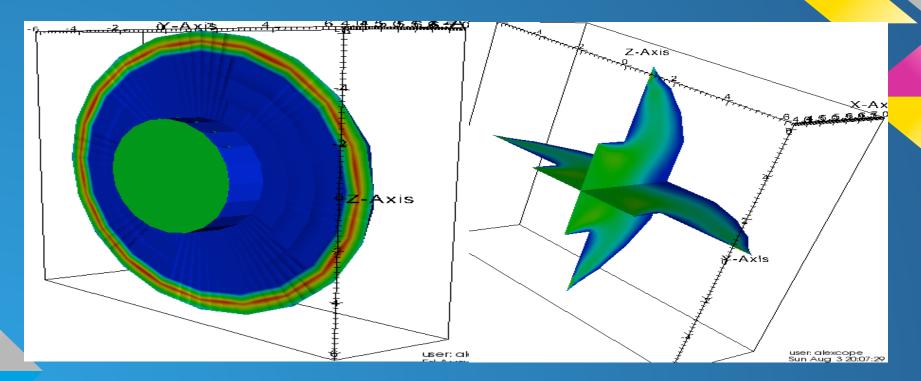
Mesh Refinement

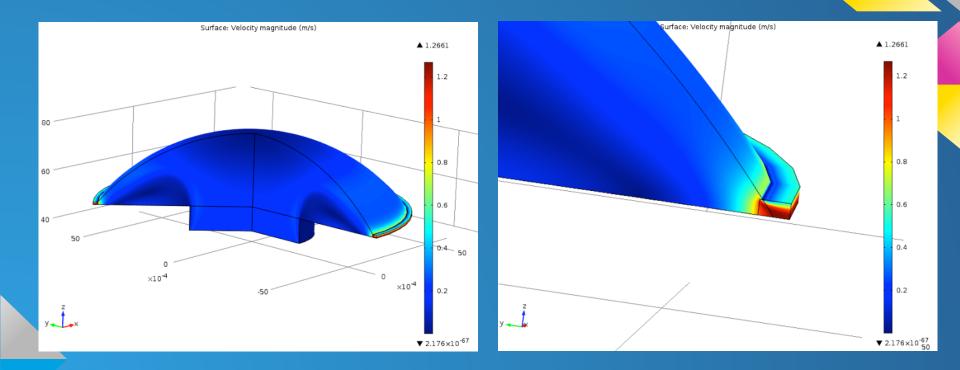

Velocity - 2D



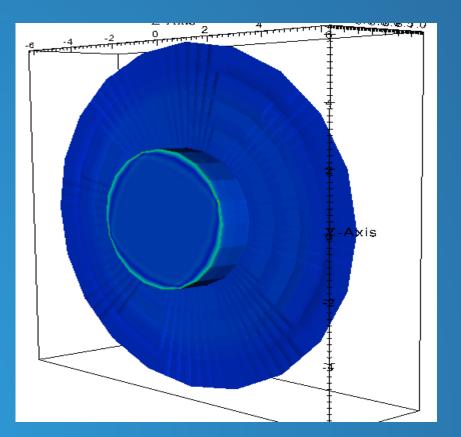
Deal.II Simulation

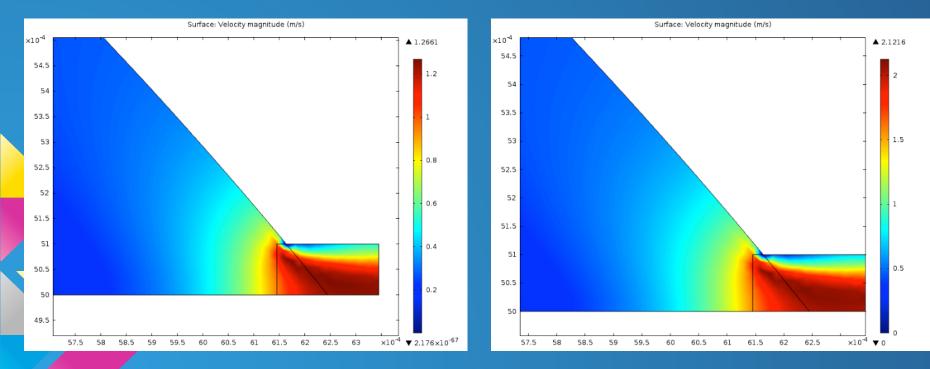
Pressure - 2D

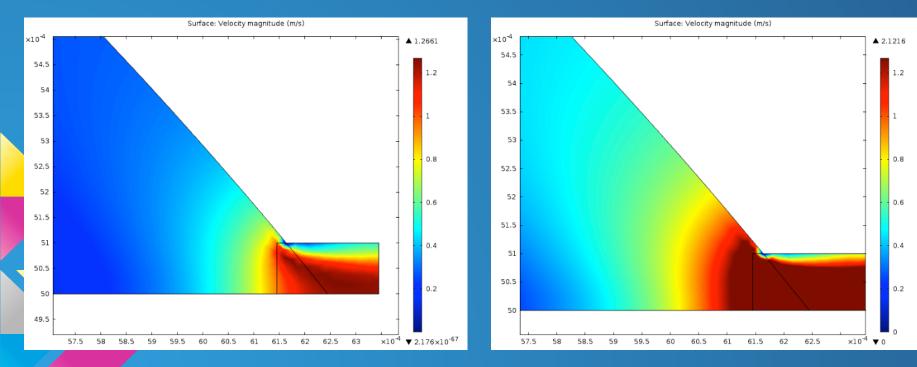



COMSOL Simulation

Deal.II Simulations


Velocity - 3D (Deal.II)


Velocity - 3D (COMSOL)


Pressure - 3D (Deal.II)

Relative Data (COMSOL)

Relative Data (COMSOL)

Parallel Code

 Code has been developed to solve 1D Laplace problem in parallel

$$\Delta u = 0$$

Makes use of MPI and Trilinos packages
Galerkin Method

Example

```
int tmp2=0;
 for (int i=0;i<NumMyElements;++i)
   off=offset[MyGlobalElements[i]];
   double aij_tmp[off];
   int col_loc_tmp[off];
    for (int j=tmp2;j<off+tmp2;++j)</pre>
             aij_tmp[j-tmp2]=aij[j];
             col_loc_tmp[j-tmp2]=col_loc[j];
    A.InsertGlobalValues(MyGlobalElements[i],off,aij_tmp,col_loc_tmp);
   tmp2=off;
```


Output for N=5 with 3 processors

Processor	Row Index	Col Index	Value
0	0	0	1
0	0	1	0
0	1	0	-1
0	1	1	2
0	1	2	-1
1	2	2	2
1	2	3	-1
1	2	1	-1
1	3	2	-1
1	3	3	2
1	3	4	-1
2	4	4	1
2	4	3	0

Solution time: 0.000562 (sec.) total iterations: 4					
Solved x: Epetra::Vector	MyPID	GID	Value		
0 0			0		
1 25 Solved x: Epetra::Vector	1	2	50 1		
3 75 Solved x: Epetra::Vector	2	4	100		

Problems

• Deal.II code documentation makes many assumptions about its users

- assumes a strong background in mathematics, particularly numerical and finite element methods
- users not familiar with these concepts may be better suited using a different piece of software
- COMSOL
 - modifying equations is not straightforward
- These issues drastically slowed down our progress

Conclusions and Future Goals

- Velocity patterns seem consistent

 why not pressure?
- 3D simulations need continued refinement
 - Deal.II 3D simulations will need to be run in parallel
- Begin modifying equations for 2D simulations
 Begin expanding Laplace 1D code to work for 2D/ 3D.

Acknowledgments

NSF and CSURE
University of Tennessee and ORNL
Kwai Wong and Christian Halloy
Ben Ramsey and Jacob Pollack

References

1. Canning, C. R. (2002, 12). Fluid flow in the anterior chamber of a human eye. Mathematical Medicine and Biology, 19(1), 31-60. doi: 10.1093/imammb19.1.31

2. Crowder, T.r., and V.j. Ervin. "Numerical Simulations of Fluid Pressure in the Human Eye." Applied Mathematics and Computation 219.24 (2013): 11119-1133. Print.

3. Ferreira, J.a., P. De Oliveira, P.m. Da Silva, and J.n. Murta. "Numerical Simulation of Aqueous Humor Flow: From Healthy to Pathologic Situations." Applied Mathematics and Computation 226 (2014): 777-92. Print.

4. Heys, J. J., Barocas, V. H., & Taravella, M. J. (2001, 12). Modeling Passive Mechanical Interaction Between Aqueous Humor and Iris. Journal of Biomechanical Engineering, 123(6), 540. doi: 10.1115/1.1411972

References

5. Fitt, A. D., and G. Gonzalez. "Fluid Mechanics of the Human Eye: Aqueous Humour Flow in The Anterior Chamber." Bulletin of Mathematical Biology 68.1 (2006): 53-71. Print.

6. Roy, Sayon and Tsuyoshi Sato. "Effect of High Glucose on Fibronectin Expressions and Cell Proliferation in Trabecular Meshwork Cells." Investigative Ophthalmology and Visual Science 43.1 (2002): 170-175. Print.

7. Villamarin, Adan, Sylvain Roy, Reda Hasballa, Orestis Vardoulis, Philippe Reymond, and Nikolaos Stergiopulos. "3D Simulation of the Aqueous Flow in the Human Eye." Medical Engineering & Physics 34.10 (2012): 1462-470. Print.