
TEMPLATE DESIGN © 2008 www.PosterPresentations.com 

OBJECTIVE 

  

  
 
 
 
 
 

VISUAL OF THE OVERVIEW 

TEAM INFO 

PRELIMINARY RESULTS CHOLESKY FACTORIZATION 

REFERENCES 

 We will explore how different runtime systems can 
be implemented on the Intel Xeon Phi System on Beacon. 
This coprocessor does have its own Intel MKL library that 
implements BLAS and LAPACK functionality. For this 
research, we will first explore how to utilize PLASMA for 
handling dense linear algebra computations and QUARK for 
task management and added parallelism to figure out the 
dependencies between the tasks and the scheduler. Once 
accomplished, these algorithms will be rigorously tested 
on the Beacon’s MIC card for performance analysis and 
comparison with the standard Intel MKL implementation. 
Another goal is to implement a hybrid Out-of-Core 
algorithm for Cholesky factorization that can be used in 
conjunction with the PLASMA/QUARK implementation to 
see if its performance is efficient and scalable. 

 

Authors: Allan Richmond Razon Morales (The George Washington University), Tian Chong (The Chinese University of Hong Kong) Mentors:  Dr. Kwai Wong (UTK), Dr. Eduardo D’Azevedo (ORNL) 
Runtime Systems and Out-of-Core Cholesky Factorization on the Intel Xeon Phi System 

 Cholesky Factorization: A=LLT. 
A is SPD (symmetric, positive definite). 

 
 
 
 
 
 

 
Recursive Cholesky steps on matrix blocks 

 
Ø  Step 1: L11 <-- cholesky( A11 ) ,potrf() 

Ø  Step 2: L21 <-- A21 / L11
T, trsm() 

Ø  Step 3: A22 <-- A22 – L21 * L21
T, syrk() and gemm() 

Ø  Step 4: L22 <-- cholesky( A22 ),  potrf() 
 

 
 
Ø  Tasks in Cholesky factorization depend on previous 

tasks if they use the same tiles of data. If we use a 
node to represent an operation on a tile and use an 
edge to represent a data dependency, then a DAG is 
formed. 

Ø  Once the DAG is produced and fed into the QUARK 
runtime system, tasks can be scheduled 
asynchronously and independently as long as the 
dependencies are not violated. Here a 4*4 Cholesky 
example is shown.(i,j,k): operation in the k-th 
iteration on the (i,j)-th tile. 

 

Pseudocode for DAG: 
 
for k=0…n-1 
    for j=k…n-1 
        for i=j…n-1 { 
           if (i=j=k)  potrf (A(i,j,k-1)r, A(i,j,k )w) 
          if (i>j=k)  trsm (A(i,j,k-1)r, A(k,k,k)r, A(i,j,k)w) 

      if (i=j>k)  syrk (A(i,j,k-1)r, A(i,k,k)r, A(i,j,k)w)   
       if (i>j>k)  gemm (A(i,j,k-1)r,  

     A(i,k,k)r,A(j,k,k)r,A(i,j,k)w)} 

EXPECTED GOALS 

•  PLASMA – dense algebra algorithms 

•  QUARK – multithreading and task management 

•  Intel MKL Library – optimized math library for 
    comparison with PLASMA 

There are two modes of execution within Beacon: 
Native and Offload. The former relies on programming 
directly into the co-processor (MIC card). The goal for 
further optimization is using Offload Mod  e, which 
will run on the host processor and “offload” the 
dense calculations to the co-processor.  

  

MODES OF EXECUTION 

A11 A12 

A21 A22 

L11 

L21 L22 

•  A driver optimized to implement QUARK and MKL 
threading to perform matrix multiplication and 
eventually other BLAS/ LaPACK routines. The data 
measurements should be organized and readable for 
both new and experienced users. 

•  Given the current DAG, optimize the Cholesky DAG  
and eventually replicate the DAG on QUARK. 

•  Betro, Vincent. Beacon Quickstart Guide at AACE/NICS 

•  Betro, Vincent. Beacon Training: Using the Intel Many 
Integrate Core (MIC) Architecture: Native Mode and  

    Intel MPI. March 2013 
 
•  D’Azevedo, Eduardo, Shiquan Su, and Kwai Wong. A 

Performance Study of Solving a Large Dense Matrix for 
Radiation Heat Transfer.  

•  YarKhan, Asim. Dynamic Task Execution on Shared and 
Distributed Memory Architectures. Dec. 2012.  

•  YarKhan, Asim, Jakub Kurzak, and Jack Dongarra.  
    QUARK Users’ Guide. April 2011 

u  Authors: Allan Richmond Razon Morales and Tian 
Chong 

u  Mentors: Dr. Kwai Wong and Dr. Eduardo 
D’Azevedo 

u  Collaborators: Dr. Shiquan Su, Dr. Asim YarKhan, 
and Ben Chan  

TASK DIRECTED ACYCLIC GRAPH (DAG) 

Ø  OOC stores most data on CPU memory and brings 
small pieces of data into coprocessors for 
computation,and then write them back. It takes 
advantage of the computational efficiency of 
hardware accelerators without limiting the size of 
the matrix problem. 

 
Ø  CPU vs coprocessors(GPU,MIC,etc.):GPU is much 

faster and more energy efficient than CPU but has 
limited amount of device memory. 

Ø  The out-of-core part loads parts of the matrix. For 
example, matrix panels,to device memory,and applies 
the “left-looking” update from the parts already 
factorized and written back. 

Ø  The In-core part factorizes the parts residing on device 
memory in which “right-looking” update is involved. 

OOC STRUCTURE 

PROPOSED METHODOLOGY 

Ø  Matrix Multiplication and other BLAS routines 
(QUARK, Intel MKL) 

Ø  Hello World Multithreading (QUARK, Intel MKL) 

Ø  Performance Testing in seconds and GFLOPS – Giga 
Floating Operations Per Second (PLASMA, Intel MKL) 

CURRENT PROGRESS 

Ø  I have modified example code from Dr. Asim YarKhan, 
one of the main developers of QUARK, for a matrix 
multiplication driver that will measure the 
performance of serial implementation and QUARK 
multi-threading. 

 
 
Ø  The data will be printed in a user-friendly manner 

and measure the data in seconds and GFLOPS. 

Ø  To generate GFLOPS/sec,  under the assumption for 
matrix multiplication C = A * B that A,B,C are 
symmetric matrices (n by n), then the general 
formula would be:   

OUT-OF-CORE ALGORITHM (OOC) 


