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Introduction: 
Next Generation Sequencing (NGS) is a term that 

applies to many new sequencing technologies. The 

drastic increase in speed and cost of these novel 

methods are changing the world of sequence data. 

A plethora of raw sequence data is currently 

available to be studied and new datasets are 

generated by these new sequencing methods 

faster than the raw data can be thoroughly 

analyzed (Bubnoff, 2008). Each method of 

sequencing has its own set of anti-limitation and 

limitations, yet no technology currently developed 

can generate a full genomic sequence. The genome 

is produced in fragments or short reads and then 

must be “assembled” (through computational 

methods) in order to piece together the fragments 

(Nagarajan and Pop, 2013). Sequence assembly is 

computationally intensive and it is almost nearly 

impossible to verify accuracy. There are many 

algorithms used for sequence assembly and many, 

if not all depend on the characteristics of the input 

data. However, simply joining the fragments 

together is not the only step to sequence assembly. 

There are three main steps—data quality control, 

assembly, and assembly verification (Magoc, et al. 

2013). Many sequence assembly programs do not 

conduct all three steps, yet the data quality control 

is just as critical to a study as the sequence 

assembly or the assembly verification. The process 

of these three steps collectively is referred to as an 

assembly pipeline or workflow and in order to 

complete the workflow, two and sometimes three 

separate programs are often required. NGS 

technologies have greatly increased the need and 

use of assembly pipelines. Scientists conducting the 

experiments that generate the sequence data 

rarely have the computational experience to run 

the programs required to conduct their full study. 

This is due to the fact that most of the developed 

programs are a command-line interface and 

require significant skills in programming or 

computational science. As one can imagine, this 

creates a critical need for pipeline interfaces. The 

proposal of the overall NGS pipeline project is to 

create pipelines for four different computationally 

intensive processes required for scientific studies—

genome assembly, genome annotation, RNA-seq, 

and variant calling. This report focuses on the 

pipeline intended for genome or sequence 

assembly and the different ways in which assembly 

can be refined. Eventually, the three steps needed 

for a complete sequence assembly (see Appendix 

B, figure 3) will be combined into a single script 

with an interface that allows researchers to 

efficiently and easily complete their assembly 

projects.  

Methods:  
Assembly was tested using genome data from the 

bacteria, Vibrio gazogenes. The data was collected 

by the Smithsonian Institution (Dikow, et al. 2013). 

As provided, the data sets were too large for a 

successful run through any assembler program and 

in order to obtain a usable dataset, the V. 

gazogenes genome files were trimmed using either 

Trimmomatic or BBtools. Trimmomatic is a 

sequence preprocessing tool developed especially 

for paired-end reads and BBtools is explained in the 

BBtools section below. A difficulty in processing 

paired-end reads is the need for the positional 

order of each read to be conserved throughout all 

preprocessing steps. Paired-end data is typically 

found in two FASTQ files, the forward reads and 

the reverse reads. (See Appendix A for more 

information regarding Paired-end data.) The reads 

would have been generated in a specific order that 

aligns the forward reads with their respective 

reverse reads.  
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Resources: 

Software:  
The following software programs were used throughout 

the project. 

Trimmomatic:  

Trimmomatic is a special preprocessing tool that is 

successfully and efficiently able to identify the 

adapter sequences and filter the reads based on 

quality while still maintaining the position and 

order of the reads (Trimmomatic article). Once the 

trimmed datasets were generated, they were run 

on multiple assembler programs. This report 

focuses on the results from SPAdes and 

SOAPdenovo2 with k-mer sizes of 21, 33, 55, and 

71. A random 50 % of the trimmed database was 

selected as a “subset.” This subset was run through 

both SPAdes and SOAPdenovo2 with k-mer sizes of 

51, 61, 71, 81 and 91. The assembled outputs were 

run through QUAST which returns statistics used 

for a comparison of output (Gurevich, et al. 2013). 

Statistics chosen for comparison at this point in the 

project are number of contigs, genome size N50, 

and Guanine/Cytosine content.  

BBtools: 

Another set of tools were also used for reducing 

dataset size, BBtools. BBtools has many programs 

that do a variety of processing on a dataset. 

(BBtools reference) For the purpose of our project, 

we used a combination of bbnorm and bbtrim. 

Bbnorm trimmed the data by normalization and 

reduction of coverage before bbtrim trimmed the 

low-quality reads. Normalization removes any 

redundancy within the data. Genome coverage is 

the total length of all reads divided by the number 

of base pairs in the genome. Reducing the 

redundancy of reads would in directly reduce the 

coverage (Illumina paper). The smaller dataset 

output from bbnorm and bbtrim was also run 

through the different assembler programs, SPAdes 

and SOAPdenovo2 with k-mer sizes of 21, 33, 55, 

and 71. The assemblies were run through QUAST 

and the resulting statistics were compared to 

assess the quality of the assembly. For examples of 

how to run bbnorm and bbtrim, see Appendix C. 

The differing methods of trimming the dataset will 

be compared to determine if one trimming method 

produces better assemblies. This outcome could 

vary among assembler programs, as some are 

known to not work well with normalized data.  

SPAdes: 

SPAdes is a sequence assembler program that uses 

a novel form of the de Bruijn graph—multisized de 

Bruijn. There are four explicit stages to SPAdes 

assembly which include graph construction, k-mer 

adjustment, paired assembly graph, contig 

construction. SPAdes can detect the k-mer size for 

best utilization of assembly after it constructs the 

initial graph. The new multisized de Bruijn graph 

implements new methods for “error correction” of 

constructed graph (Bankevich, et al. 2012). Graph 

error correction typically refers to removing pieces 

of the graph that do not have a high probability of 

being an accurate assembly. Error correction is a 

tough balance; too vigorous error correction can 

remove parts of the graph that were accurate 

representations of the assembly while too subtle 

error correction does not provide an easily 

readable and usable assembly (Li, et al. 2010). 

SPAdes construction method of the multisized de 

Bruijn graph presents the user with the option to 

backtrack all the steps of graph construction. For 

an example of a call to SPAdes, see Appendix C, 

figure 6. 

SOAPdenovo2: 
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The SOAPdenovo2 assembler was built for de novo 

assembly of large, mammalian genomes (Magoc, et 

al. 2013).  De novo assembly means that there is no 

reference genome used to assemble the data. This 

is especially helpful when the data is from a species 

that does not have a full genome sequence 

available (Nagarajan and Pop, 2013). SOAPdenovo 

also uses the de Bruijn graph method but does 

require each new edge in the graph be linked to an 

existing sequence (Li, et al. 2010). For an example 

of a call to SOAPdenovo2 and the required 

configure file, see Appendix C, figure 7 and 8, 

respectively. 

QUAST: 

QUAST is a program the uses multiple quality-check 

algorithms that are typically only found in separate 

programs. Some of the algorithms produce 

statistics that need a reference genome in order to 

compute while others like Guanine/Cytosine (GC) 

content do not. QUAST produces many different 

tables and plots but this project focuses on the 

following four values: number of contigs, genome 

size, N50, and GC content. The number of contigs is 

self-explanatory and represents the total number 

of contigs in the assembly. This value is compared 

to the number of chromosomes found in the 

sample organisms’ genome. Genome size is 

represented as the total number of bases in the 

assembly. If available, the genome size is compared 

to the reported genome size of the sample 

organism. If the genome of the organism has never 

been studied, the genome size will be compared to 

the genome size of closely related organisms. The 

N50 value represents a contig length that 50% of all 

contigs fall above. GC content is simply a count of 

all Guanine or Cytosine bases found in the 

assembly divided by the total number of bases. The 

higher percentage of G or C bases produces a more 

stable molecule (Gurevich et al. 2013).  

Hardware: 

The Nautilus super computer located at Oak Ridge 

National Laboratory was used due to its large 

amount of available memory. Nautilus uses an SGI 

Altix UV system and has one UV1000 node 

containing 128 Intel processors (1024 cores) with 4 

terabytes of global shared memory and 8 GPUs 

(NICS).  

Results: 
The results for all runs of this project can be found 

in Tables (a)-(d) in Appendix D. None of the runs 

produced results close to the ideal number of 

contigs, 36. Thirty-six is the number of 

chromosomes found in the genome of V. 

gazogenes and therefore with 1 contig per 

chromosome being the best possible outcome, 36 

contigs is the ideal result. The assembled genome 

size was steady around 4.5 million base pairs for 

most runs. The GC content also remained steady 

around 45% for most runs. SOAPdenovo2 runs of 

the Trimmomatic trimmed data k-mer sizes of 21 

and 33 had results that varied significantly from the 

rest of the results with less than 20 contigs and a 

genome size of only about 11 thousand base pairs. 

The reason behind this difference is still being 

investigated.  

Conclusion and Continuation:  
Despite Dikow, et al. (2013) reporting a genome 

size of over 6 million base pairs for the organism, 

we suggest that the genome of Vibrio gazogenes is 

between 4 to 4.5 million base pairs. Both 

normalized and quality trimmed data produced 

genomes of roughly this size. Also, species closely 

related to V. gazogenes typically have genomes of 

between 4.5 to 5 million base pairs. It is unlikely 

that species closely related to one another have 

genome sizes that differ in over a million base 

pairs. The stability of the results produced from 
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Trimmomatic processed sequences with the results 

from BBtools processed sequences suggests that 

neither method negatively affected the outcome of 

assembly. Once the method of using BBtools for 

pre-processing of sequences was successful, a 

collective bash script that runs bbnorm, bbtrim, 

SPAdes and/or SOAPdenovo2, and QUAST was 

written. This script does not remove the command 

line interface of each program but does greatly 

increase the ease of use for scientists who might 

need these programs used together. The amount 

of time spent on figuring out the right environment 

set up and parameters for each program has also 

been significantly decreased by the development of 

this collective script. Alongside, the script there is a 

general configure file for the SOAPdenovo2 runs 

which contains documentation on how to correctly 

set up said file. This collective script will continue 

to be developed into a script that can run multiple 

pipelines of assembly with varying parameters, not 

just the set of 4 programs currently incorporated. 

Eventually, these collective and general files will be 

used to remove the command line interface 

presented to the user and replace it with a web- 

based graphical interface.   
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Appendix A 

 

  

Caption for Figure 1: Diagram showing process of collecting paired-end reads. The genomic DNA is 

sequences into fragments which adaptors and primers are attached to (Green, Blue, and Purple ends). 

A cluster is formed and the sequences are read starting from both adaptors, producing the paired-end 

read. (Modified visual from Illumina Data Sheet: Sequencing). 

 



Eason 6 
 

 

Appendix B 

 

 

                                                                                                                                                                                                   

  

Figure 2: Diagram for the complete data analysis process. Orange rectangles are 

the actual analysis steps while the gray rectangles represent input from outside 

sources.  
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Figure 3: Diagram for the complete assembly process, beginning with raw sequence data. The assembled 

sequences must be checked for accuracy– a difficult step. Green rectangles are the steps, gray circles a short 

description. And blue arrows are steps that have their own process.  
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Appendix C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: bbnorm call for a paired-end data set (gazo_fwd.fq and gazo_rev.fq) 

Figure 5: bbtrim call for normalized paired-end data set (VgBBnorm_fwd.fq and 

VgBBnorm_rev.fq) 

Figure 6: SPAdes call for paired-end data set (paired1.fq and paired2.fq) 
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Figure 7 (above): SOAPdenovo call with k-mer size K=21 for paired-end data set 

(paired1.fq and paired2.fq)  

Figure 8 (below): Example of SOAPdenovo config file for paired1.fq and paired2.fq 

Figure 9: QUAST call for SOAPdenovo 21 k-mer results 
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Appendix D 

(a) 

SPAdes (Trimmomatic) 

Kmer size # of contigs Genome Size N50 GC % 

21 514 4,430,394 17,374 45.27 

33 282 4,467,765 54,782 45.27 

55 215 4,496,327 68,126 45.27 

71 120 4,555,395 246,573 45.32 

Subset 51 201 4,468,133 61,386 45.30 

Subset 61 193 4,485,523 68,843 45.31 

Subset 71 180 4,499,332 79,631 45.32 

Subset 81 173 4,510,565 88,093 45.33 

Subset 91 88 4,545,153 262,031 45.36 

 

 

 

(b) 

SOAPdenovo2 (Trimmomatic) 

Kmer Size # of contigs Genome Size N50 GC % 

21 16 11,398 690 42.96 

33 17 11,766 690 41.00 

55 1,385 968,669 685 46.87 

71 444 4,448,857 18,563 45.33 

Subset 51 1,481 4,321,140 4,296 45.39 

Subset 61 309 4,459,372 29,329 45.30 

Subset 71 206 4,481,934 55,249 45.30 

Subset 81 172 4,499,317 75,768 45.32 

Subset 91 159 4,519,076 100,098 45.34 

 

 

  
Tables (a) and (b): (a) is for the assembly of Trimmomatic trimmed data through SPAdes 

while table (b) is for the same but using SOAPdenovo2. Both table (a) and (b) show number 

of contigs, genome size, N50, and GC % statistics for k-mer sizes 21,33,55,71 and a random 

50% subset of data’s statistics for k-mer sizes 51,61,71,81, and 91.  
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(c) 

SPAdes (BBtools) 

Kmer Size # of contigs Genome Size N50 GC % 

21 506 4409861 17,893 45.29 

33 263 4445712 49,223 45.30 

55 190 4474737 65,281 45.30 

71 106 4532943 167,499 45.35 

 

 

(d) 

SOAPdenovo2 (BBtools) 

Kmer Size # of contigs Genome Size N50 GC % 

21 770 4389210 9,940 45.29 

33 379 4430953 24,090 45.28 

55 202 4467392 62,696 45.30 

71 169 4488672 81,399 45.31 

 

Tables (c) and (d): (c) is for the assembly of Bbtool trimmed data through SPAdes while 

(d) is for the same but through SOAPdenovo2. Both tables (c) and (d) show number of 

contigs, genome size, N50, and GC % statistics for k-mer sizes 21, 33, 55, and 71.  

 


