
Scaling and Optimizing Stochastic Tuple-Space Communication in the Distributive Interoperable Executive Library

Zaire Ali (Morehouse College)
Jason Coan (Maryville College)

Mentors: Kwai Wong and David White

Existing Prototype of Tuple Communication Abstract

The DIEL

The Distributive Interoperable Executive Library (DIEL) is a multi-component
software framework designed to configure and execute an arbitrary series of
intercommunicating parallel physics solvers.
 Capable of running many existing users’ codes on HPC machines such as Darter

and Beacon
 Utilizes an inter-process interface defined by the user in a configuration file
 Currently provides direct data exchange using user-defined boundary conditions

and a prototype of indirect data exchange via a global tuple space
Our task is to improve and extend the tuple space implementation to make it a
viable and efficient method of communication. This includes a number of challenges
to overcome, both in the code that already exists and the code that we must write,
which are discusses here.

The DIEL is composed of the executive, configuration file, and the
communication library

Executive
 Written in C using MPI
 Provides a series of functions to add/remove modules and execute simulations

using a configuration file
 Preprocesses configuration file and broadcasts communication information to

each module
 Loads and executes each module
 Supports simulations with multiple parallel and/or serial physics solvers

 A dedicated server function with its own tuple space continuously runs in the
background (started by the executive)
 IEL_tput(data, size, tag) send data to the specified server
 IEL_tget(data, size, tag) receive data from the specified server

 Each committed tuple is associated with a tag, and the server stores and
retrieves it according to this tag.

 Memory is dynamically written to a linked list.
 Advantages:
 Asynchronous, stochastic communication
 Allows for a dedicated process to handle communication and memory

management
 But there are problems with the current implementation:
 One server process can only handle one request at a time.
 The code that existed when we arrived was not thread-safe.
 The existing executive functions and communication library have certain

pitfalls that prevent the starting of multiple tuple servers.

Contact Information
Zaire Ali, zaireali493@yahoo.com

Jason Coan, jason.coan@my.maryvillecollege.edu
Kwai Wong, kwong@utk.edu

The DIEL: Past, Present, and Future

Direct Communication
 Direct data exchange among physics modules according to shared boundary

conditions specified in the configuration file
 Basic functions:
 IEL_put(cinfo, handle, data) – non-blocking/blocking send
 IEL_get(cinfo, handle, data) – blocking receive

 Essentially blocking—a matching send is required for every receive
 Direct communication has the disadvantage of being synchronous,

meaning both the sending and receiving processes must be ready at the
same time. If the receiver is not ready, the sender must wait. In a system
were performance is a key requirement, asynchronous communication
should be made available for when processes are not guaranteed to be in
sync with one another.

 Also, since even the code we are not specifically tasked to expand is in
alpha stage, we sometimes encounter issues with it that need to be
resolved before our new asynchronous communication code will work
properly.

Our Development

We have decided that our improvement of the tuple space should take place in
three phases:
1. Allow for multiple concurrent tuple space servers to be started at the same

time.
 Modify the executive to start the number of servers specified in the

configuration file. This is done by modifying the calls to libconfig:
int tupleSize;

if(!config_lookup_int(&cfg, “tuple_space_size”, &tupleSize)){

 ERRPRINTF(“\tuple_space_size\” option not set\n”);

 cleanup_before_err_ret();

 config_destroy(&cfg);

 return -1;

}

exec_info->tuple_size = tupleSize;

 Modify the IEL_tput and IEL_tget functions to be able to specify a specific
server to which to send/receive the data. For example, our new IEL_tput
function looks like this:

int IEL_tput(size_t size, int tag, int serverRank, void * data)

{

 int rv;

 …

 …

 //blocking send of handshake containing size of data to be sent

 rv = MPI_Send(&size, 1, MPI_UNSIGNED, serverRank, TUPLE_PUT,

 MPI_COMM_WORLD);

 if(rv != MPI_SUCCESS) {

 ERRPRINTF("error in handshake, SEND1\n");

 return IEL_SEND_ERROR;

 }

 else

 DBGPRINTF("tput sent handshake with buffer-size=%d\n",

 (int)size);

 //blocking send of tuple with tag corresponding to committed tuple's

 //tag

 rv = MPI_Send(data, size, MPI_BYTE, serverRank, tag, MPI_COMM_WORLD);

 …

 …

 return IEL_SUCCESS;

}

2. Re-implement the associativity used in the direct communication functions as
the rule of associativity for the tuple space.
 The tuple servers should use the same shared boundary condition data

from the configuration file to store/receive it’s data, as opposed to an
arbitrary tag. This means the tuple servers need to receive the same
component information that the executive previously broadcasted to the
modules

 In the code to the left, we see that IEL_tput is using an arbitrary tag to
identify the tuple to the server. In phase 2 we want that tag to be
determined by the DIEL , not the user, according to the configuration file.

3. Create a master Tuple Space Manager that forms one abstract tuple space
from all of the individual tuple space servers.
 Should be the process to enforce the rules of associativity.
 It should inform modules of which tuple server to send a specific tuple to

based on the shared boundary condition that it represents.
 It is desirable for one process to be in charge of this in order to avoid race

conditions and incoherency.
 The potential problem here is that the Manager may end up having too

much to do, and therefore become a bottleneck for the entire system. On
the other hand, if some of this responsibility is delegated back to the tuple
servers themselves, it may involve too many messages being passed
around. Since relatively large latencies are associated with passing
messages, the number of messages passed should be minimized.

 We will therefore need to test out different implementations and collect
metrics to determine which performs best in different circumstances.

Our Development (cont.)

