
Scaling Tuple-Space Communication in the
Distributive Interoperable Executive Library

Jason Coan, Zaire Ali, David White and Kwai Wong

August 18, 2014



Abstract

The Distributive Interoperable Executive Library (DIEL) is a software frame-
work designed to configure and execute a series of loosely coupled scientific mod-
ules in parallel. The DIEL is capable of running many existing users’ codes on
high performance computing machines such as Darter and Beacon. It includes
an interface for inter-process communication that is controlled via a simple con-
figuration file. Currently provided are direct data exchange using user-defined
shared boundary conditions and a prototype of indirect data exchange via a
global tuple space. Our task is to improve and extend the tuple space imple-
mentation to make it a viable and efficient method of communication.



Chapter 1

Background

1.1 Loosely Coupled Systems
A loosely coupled system is one in which each module solves its part of the overall
problem without knowing about the internal workings of any other module.
By extension, the module cannot depend on any other module working in any
specific way, and should another module be removed, modified, or swapped with
another, the first module can still operate. The only dependency a module has
on the system is that the system somehow provides it with the type of data that
serves as input to its primary computational functioning, but the source of that
input does not matter to the module.

In such a system, the points on the shared boundaries between modules
represent only computational input and output that is directly related to their
primary abstract functions. For example, a loosely coupled module calculating
escape velocities of astronomical objects could receive only mass and distance to
center of gravity as inputs and produce only escape velocity as output. In this
case, we say that the boundaries of this module’s domain have three conditions
on them to share with other modules.

This program design results in highly reusable code. If our escape velocity
module meets the above specifications, it can fit into almost any system that
needs escape velocities to be calculated. Over the course of multiple projects
using this design, the amount of redundant work is reduced dramatically. Loose
coupling also reduces the overall complexity of the system and makes it easier
to debug. And, of course, it allows for the problem to be solved efficiently on a
parallel computer by producing algorithms that can do their work independently
in dedicated threads.

1



1.2 The Distributive Interoperable Executive Li-
brary

The DIEL seeks to encourage and facilitate the creation of loosely coupled sys-
tems on high-performance computers. It does this by providing a framework
for identifying the modules of the system and their shared boundary conditions.
Library functions execute the configured modules and expose to them a small,
simple API for passing data along the shared boundary conditions. The system
is configured with a simple configuration file that is parsed by the “executive”,
which compiles and broadcasts the configuration information to the modules.

The library seeks to be as lightweight as possible. It is designed with the
assumption that users’ modules will themselves spawn parallel processes that
pass messages between themselves, and then the DIEL communication API will
be used to exchange data at a higher level of abstraction. For this reason, the
DIEL should minimize the amount of overhead associated with the use of its
communication functions to avoid clogging the HPC interconnect.

The DIEL provides two methods of communication. The first is synchronous,
one-to-one message passing via wrappers for MPI_Send and MPI_Recv. These
wrappers enforce the loose coupling information in the configuration file and
check for and handle any MPI errors. The second is asynchronous, anonymous,
many-to-many message exchange via a global tuple space. This report will trace
the development of the tuple space from a previously-existing prototype to its
current state as a viable method of communication.

2



Chapter 2

Goals

2.1 Understanding the Requirements
“A supercomputer is a device for turning compute bound prob-

lems into I/O bound problems” – Ken Batcher

A tuple space is associative memory that can be accessed concurrently. It was
invented by David Gelernter as the basis for his Linda programming language as
an alternative to the message passing and shared memory paradigms[?]. There
are several mature implementations of tuple spaces, such as JavaSpaces and T-
Spaces, but these are designed for distributed systems over wide-area networks
and the World Wide Web[?]. The requirements for those systems include fault-
tolerance and redundancy. Since the compute nodes of these systems are remote
from each other and may be under the control of different people, the designers
must anticipate nodes occasionally disappearing and define procedures for con-
tinuing operation despite this. Geographic location is also important, as there
will be very high latencies in accessing a tuple that is geographically far away.
For this reason, one would want copies of every tuple spread evenly throughout
the system, to minimize the distance between each node and each tuple. These
requirements lead to large overhead from using the tuple space. Messages must
be continually passed between every tuple space server to ensure the coherency
of tuple copies and to check for node disappearance.

Given the truth in the quote by Ken Batcher above, a tuple space for an HPC
cluster must meet a different set of requirements. Nodes in a supercomputer
do not often fail, and when they do, the whole system should stop so that
the problem can be addressed. Also, the latencies associated with I/O cannot
be addressed by reducing physical distances with redundant copies, as modern
interconnects are already designed to minimize the distance between one node
and any other node as much as is currently possible. The way to maximize
communication performance in this scenario is to minimize the number and size
of messages being passed and to prefer non-blocking procedures over blocking
ones. So, fault-tolerance and redundancy are left out.

3



2.2 Existing Prototype
A prototype of tuple-space communication existed before we arrived. It con-
sisted of a single server processing “get” and “put” requests in sequence, dynam-
ically storing committed tuples in a linked list. It was a special function called
on MPI rank 0 by the executive. It was an integral part of the DIEL as a whole,
which contradicted our stated goal of developing a modular system. Since a
tuple space is, by definition, concurrently accessible, it did not represent a true
tuple space implementation. Rudimentary associativity was implemented, but
this consisted of the user arbitrarily assigning a tag to each tuple when putting
it to the server.

2.3 Desired End
In order to create a fully modular system, we thought it best to convert the
tuple space into a DIEL module like any other. This way, the tuple space can
be swapped with a modified version or entirely new implementation without
having to recompile the DIEL. Once we accomplish this, we need to be able to
execute multiple instances of this module as we would any other module. Each
of these tuple servers should be able to control an even portion of the overall
tuple space. Other module processes should be able to use a hash function
to discover the proper server for a specific tuple, creating a distributed hash
table from the tuple servers. The input to the hash function should be the
associativity data for the tuple, which should correspond to the same shared
boundary conditions defined in the configuration file.

4



Chapter 3

Development

3.1 A Distributed Hash Table
In a hash table, a hash function calculates the proper index for data element
based on its associated key. In a distributive hash table, the hash function
returns the proper node as well as the index on the node. This means we do
not need to pass messages between multiple processes just to find out where our
data element is located.

Each of the shared boundary conditions in the configuration file is assigned
an integer-value ID. The hash function uses modulus to determine the correct
tuple server, and again to determine the correct index:

SBC_ID mod NUM_SERV = server
SBC_ID mod NUM_IDX = index
DIEL modules have two functions for interacting with the tuple space:

Producer: IEL_tput(&data, size, sbc)

Consumer: IEL_tget(&data, &size, sbc)

Since the hash function always returns the same values for the same input, if
IEL_tput and IEL_tget both call the hash function, they will get back the same
location. Thus, they will look in the same place without directly communicating
with each other.

3.2 Anticipating a Stochastic Process
A major challenge with most parallel systems is that they are, from the pro-
grammer’s point of view, nondeterministic. By this we mean that the actual
sequence of events from the point of view of the entire system will usually be
different every time the program is run because every process is individually
subject to a large number of uncontrollable variables. A robust tuple server

5



algorithm must be able to anticipate and handle all possible sequences short of
a catastrophic hardware failure.

For example, consider having a producer module and a consumer module.
The producer module is delayed by the operating system, and the consumer
calls IEL_tget on the relevant data before the producer calls IEL_tput. So,
the tuple server is faced with being asked for data that it does not have. When
we started development, the existing tuple server algorithm could not handle
this case. The system would become deadlocked and never complete.

We modified the server’s algorithm so that it can continue receiving requests
from other processes after the above situation arises, giving the producer a
chance to put its tuple to the server so the consumer’s request can be fulfilled
later. It does this by sending a message back to the consumer that the tuple
was not found. Since IEL_tget is currently a blocking procedure, the consumer
will now wait until it receives another message from the tuple server. In the
meantime the tuple server stores the MPI rank of the consumer in a sparse
array indexed by the SBC_ID that it requested. Whenever the tuple server
receives any tuple via IEL_tput, it checks the sparse array to see if any process
is currently waiting on that SBC_ID. If so, it will complete the requests at this
time.

3.3 Testing
After developing a working implementation that meets our requirements, we
should test the system to make sure all requests are being fulfilled correctly and
the tuple server algorithm is thread-safe. The code for our test is located in the
Appendix, but what follows is an outline of the algorithm.

3.3.1 A Randomized Stress Test
• Do this ten times, with ITER starting at 0:

– Send your rank id to the tuple space using your rank ID plus ITER
as the input to the hash function

– Do this until you are done:

∗ Based on the number of module processes, pick a rank ID at
random

∗ Request that ID from the tuple space, using the ID plus ITER
as the input to the hash function

∗ Repeat until you have received every rank ID in the system,
including your own, at which point you are done

– Increment ITER and repeat

6



3.3.2 Results of Test
Due to the randomized nature of the test, we should run it many times and
then look at the distribution of completion times. We expect this distribution
to have no outliers, and any outlier probably signifies a problem. Also, the
module needs to check that every time it receives a message through IEL_tget,
the tuple is receives is actually the one that it requested.

We ran this test with 16 tuple servers and 256 modules processes on Darter.
After 40 trials, the tuple servers collectively fulfill an average of 9.6 million
tget/tput requests per trials. Every request is fulfilled correctly. It takes an
average of 7.5 seconds to complete, with no obvious outliers.

3.4 Future Development
While the long-term goals of the DIEL in-general are outside the scope of this
report, we can name the next steps of tuple-space development specifically:

First, each shared boundary condition represented in the tuple space should
have its own dedicated underlying data structure that can act as a queue, stack,
generic set, etc. to provide more options for user code.

Also, to match the functionality of most mature tuple space implementa-
tions, we should provide both blocking and non-blocking versions of IEL_tget.
Our current function is completely blocking: once it requests a tuple from a
server, it will wait until it receives it, even if the producing module has not put
the tuple to the server yet. This in particular will certainly cause performance
issues in many real-world scientific simulations.

7


