Scaling and Optimizing Stochastic Tuple-Space Communication in the Distributive Interoperable Executive Library

Joint Institute for A‘Q

Computational Sciences

Zaire Ali (Morehouse College)
Jason Coan (Maryville College)

Mentors: Kwai Wong (UTK) and David White (Maryville College)

OAK
RIDGE

National Laboratory

HE(UNIVERSITYof
]ENNESSEE

KNOXVILLE

Abstract

The Distributive Interoperable Executive Library (DIEL) is a multi-component
software framework designed to configure and execute an arbitrary series of
intercommunicating parallel physics solvers. The DIEL is capable of running many
existing users’ codes on high performance computing machines such as Darter
and Beacon while utilizing an inter-process interface defined by the user in a
configuration file. In addition, it currently provides direct data exchange using user-
defined boundary conditions and a prototype of indirect data exchange via a global
tuple space. Our task is to improve and extend the tuple space implementation to
make it a viable and efficient method of communication.

The DIEL

» Consists of the “Executive” and a communication library
» Executive reads a simple configuration file to execute desired modules and
define the shared boundary points between them
» Communication library consists of two parts:
» Direct communication — wrappers for MPl_Send() and MPI_Recv() that
enforce shared boundary conditions
» Indirect communication — global “tuple space” used to store data until it is

needed
Module Module ()
Shared Object Shared Object
A Configuration
File
\0’
[EL Executive N y
[EL Executive Layer B
[ELCOMM Layer
MPI

» Direct communication has the disadvantage of being synchronous, meaning
both the sending and receiving processes must be ready at the same time. If
the receiver is not ready, the sender must wait. In a system were
performance is a key requirement, asynchronous communication should be
made available for when processes are not guaranteed to be in sync with
one another.

Existing Prototype of Tuple Space Communication

» A dedicated server function with its own tuple space continuously runs in the
background (started by the executive)
» Each committed tuple is associated with a tag, and the server stores and
retrieves it according to this tag.
» Memory is dynamically written to a linked list.
» Advantages
» Asynchronous, stochastic communication
» Allows for a dedicated process to handle communication and memory
management
» But there are problems with the current implementation:
» One server process can only handle one request at a time.
» The code that existed when we arrived was not thread-safe.
» The existing executive functions and communication library have certain
pitfalls that prevent the starting of multiple tuple servers.

Our Development

We decided that our improvement of the DIEL and tuple space should take place
in several phases:
1. We expanded the DIEL to accept all C, Fortran, and JAVA based code
» Developed scripts that accept serial C, Fortran, and JAVA code as input and
produce DIEL-infused C code.
» Developed scripts that execute DIEL module code multiple times across
processors simultaneously
2. We allowed for multiple concurrent tuple space servers to be started at the
same time.
» Converted the tuple space into a DIEL module, like any other.
» Modified the executive to start the number of servers specified in the
configuration file. This is done by modifying the calls to libconfig:

int tupleSize;

1f (!config lookup int(&cfg, “tuple space size”, &tupleSize)) {
ERRPRINTF (“\tuple space size\” option not set\n”);
cleanup before err ret();
config destroy(&cfqg);
return —-6;

}

exec 1info->tuple size = tupleSize;
> In order to test this, we modified the IEL _tput and IEL tget functions to be
able to specify a specific server to which to send/receive the data. For
example, our new IEL_tput function looks like this (safety checks omitted
for brevity):

int IEL tput(size t size, 1int tag, int serverRank, void* data) {
//blocking send of handshake containing size of data to be sent
MPI Send(&size, 1, MPI UNSIGNED, serverRank, TUPLE PUT, IEL Comm) ;

//blocking send of tuple with the tag by which it will be indexed
MPI Send(data, size, MPI BYTE, serverRank, tag, IEL Comm);

return IEL SUCCESS;
}

3. We implemented true associativity in the tuple space.
» The tuple servers use the same shared boundary conditions from the
configuration file to index their data, as opposed to an arbitrary tag.
» This means the tuple servers need to receive the same component
information that the executive broadcasts to the other modules.
4. We are currently working on converting the tuple space to a distributed hash
table.
» The hash function enforces the rules of associativity.
» The hash function should tell modules to which tuple server to send a
specific tuple based on the shared boundary condition that it represents.
» The load of managing the tuple space should be spread as evenly as possible
amongst all the tuple servers
» Once all of this is done, we can once again remove the serverRank
parameter from IEL tput and IEL tget. Both functions need only to know
the shared boundary condition (tag) that the data represents. They can then

call the hash function to discover the destination tuple server.
int IEL tput(size t size, void* data, 1int sbc)
int serverRank = hashFunction (sbc) ;

//blocking send of handshake containing size of data to be sent
MPI Send(&size, 1, MPI UNSIGNED, serverRank, TUPLE PUT, IEL Comm) ;

//blocking send of tuple with the tag by which it will be indexed
MPI Send(data, size, MPI BYTE, serverRank, sbc, IEL Comm);

return IEL SUCCESS;

The DIEL: Past, Present, and Future

Direct Comm
(existing)

Scalable Tuple Comm
(current expansion)

Tuple Comm
(existing Prototype)

Config
File

Executive
Config

File

Config
File

Executive Executive

IEL_Exec_DTS_init()
IEL INFO,
Module INFO,
Tuple INFO, TM INFO

IEL_Exec_DE_init()
IEL INFO,
Module INFO,
Handle INFO

IEL_Exec_TS_init()
IEL INFO,
Module INFO,
Tuple INFO

INFO

Client

,_______________5
Y
- ———————"——"

Hash Function
INFO INFO
Client Client

* Scalable asynchronous many
to many exchanges

» We wrote a randomized stress test designed to create many challenging
situations for the tuple server algorithm to see how well it handles them.

» Due to the randomized nature of the test, we should run it many times and
then look at the distribution of completion times.

» 16 tuple servers, 256 module processes on Darter

> After 40 trials, the tuple servers collectively fulfill an average of 9.6 million
tget/tput requests per trial.

> It takes an average of 7.5 seconds to complete one trial.

» There is little variation in the time it takes to complete the test, and copious
safety checks ensure us that every request is being fulfilled correctly.

Client Client

2oeds a|dn|
J9AJRS 9|dn)

INFO

Client

* Asynchronous exchange, one
way communication

* Synchronous, MPI send and
receive wrapper

Future Goals

While the long-term goals of the DIEL in-general are outside the scope of this

poster, we can name the next steps of tuple-space development specifically:

1. The hash function needs to be improved to provide an index on the server as
well as the server’s rank.

2. Each shared boundary condition represented in the tuple space should have
its own dedicated underlying data structure that can act as a queue, stack,
generic set, etc. to provide more options for user code.

3. To match functionality of most mature tuple space implementations, we
should provide both blocking and non-blocking versions of IEL_tget. Our
current function is completely blocking: once it requests a tuple from a server,
it will wait until it receives it, even if the producing module has not put the
tuple to the server yet.

Contact Information

Zaire Ali, zaireali493@yahoo.com
Jason Coan, jason.coan@my.maryvillecollege.edu
Kwai Wong, kwong@utk.edu

